Nano-Biochar: A promising tool for sustainable agriculture under climate change era

Nallagatla Vinod Kumar, K.N. Pallavi, Priyadarshani Rajput, B. Bhargavi, Mandapelli Sharath Chandra, Pebbeti Chandana, Rayapati Karthik, L. Peace Raising, Naveen Kumar, Rajan Bhatt, Tatiana Minkina, Vishnu D Rajput

Abstract

Nano-biochar, a highly porous and innovative material derived from biomass, presents significant opportunities for sustainable agriculture and environmental remediation. Its unique sponge-like structure enables exceptional carbon capture and sequestration, contributing to long-term improvements in soil fertility and acting as a vital tool in climate change mitigation. This review explores the properties and production methods of nano-biochar, highlighting its enhanced nutrient retention, controlled release capabilities, and superior water-holding capacity compared to traditional biochar. These characteristics not only enhance plant growth and agricultural productivity but also promote a healthier soil ecosystem by stimulating microbial activity. Furthermore, nano-biochar's ability to adsorb heavy metals and organic pollutants offers promising applications in soil and water remediation, thus preventing environmental contamination. Despite its numerous advantages, the review identifies critical knowledge gaps regarding the long-term ecological impacts of nano-biochar and the best practices for its production and application. The paper calls for further research to address these challenges and optimize the use of nano-biochar, ensuring its responsible development within agricultural systems. By integrating insights from current literature, this review contributes to a comprehensive understanding of nano-biochar's potential and outlines future research directions to enhance its effectiveness in promoting sustainable agricultural practices.

Keywords

Carbon sequestration; Nano-biochar; Nutrient management; Responsible development; Soil remediation

Full Text:

PDF

References

Abed Hussein, B., Mahdi, A. B., Emad Izzat, S., Acwin Dwijendra, N. K., Romero Parra, R. M., Barboza Arenas, L. A., . . . kianfar, e. (2022). Production, Structural properties Nano biochar and Effects Nano biochar in soil: A review. Egyptian Journal of Chemistry, 65(12), 607-618. https://doi.org/10.21608/ejchem.2022.131162.5772.

Aftab, Z.-e.-H., Aslam, W., Aftab, A., Shah, A. N., Akhter, A., Fakhar, U., . . . Khalid, U. (2022). Incorporation of engineered nanoparticles of biochar and fly ash against bacterial leaf spot of pepper. Scientific Reports, 12(1), 8561. https://doi.org/10.1038/s41598-022-10795-8.

Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., . . . Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19-33. https://doi.org/10.1016/j.chemosphere.2013.10.071.

Amusat, S. O., Kebede, T. G., Dube, S., & Nindi, M. M. (2021). Ball-milling synthesis of biochar and biochar–based nanocomposites and prospects for removal of emerging contaminants: A review. Journal of Water Process Engineering, 41, 101993. https://doi.org/10.1016/j.jwpe.2021.101993.

Antonangelo, J. A., Sun, X., & Zhang, H. (2021). The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration. Journal of Environmental Management, 277, 111443. https://doi.org/10.1016/j.jenvman.2020.111443.

Anupama, & Khare, P. (2021). A comprehensive evaluation of inherent properties and applications of nano-biochar prepared from different methods and feedstocks. Journal of Cleaner Production, 320, 128759. https://doi.org/10.1016/j.jclepro.2021.128759.

Aziz, S., Uzair, B., Ali, M. I., Anbreen, S., Umber, F., Khalid, M., . . . Tambuwala, M. M. (2023). Synthesis and characterization of nanobiochar from rice husk biochar for the removal of safranin and malachite green from water. Environmental Research, 238, 116909. https://doi.org/10.1016/j.envres.2023.116909.

Bai, J., Song, J., Chen, D., Zhang, Z., Yu, Q., Ren, G., . . . Feng, Y. (2023). Biochar combined with N fertilization and straw return in wheat-maize agroecosystem: Key practices to enhance crop yields and minimize carbon and nitrogen footprints. Agriculture, Ecosystems & Environment, 347, 108366. https://doi.org/10.1016/j.agee.2023.108366.

Behnam, H., & Firouzi, A. F. (2023). Effects of synthesis method, feedstock type, and pyrolysis temperature on physicochemical properties of biochar nanoparticles. Biomass Conversion and Biorefinery, 13(15), 13859-13869. https://doi.org/10.1007/s13399-021-02108-2.

Bhandari, G., Gangola, S., Dhasmana, A., Rajput, V., Gupta, S., Malik, S., & Slama, P. (2023). Nano-biochar: recent progress, challenges, and opportunities for sustainable environmental remediation [Review]. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1214870.

Bieser, J. M. H., Al-Zayat, M., Murtada, J., & Thomas, S. C. (2022). Biochar mitigation of allelopathic effects in three invasive plants: evidence from seed germination trials. Canadian Journal of Soil Science, 102(1), 213-224. https://doi.org/10.1139/cjss-2020-0160.

Bolan, N., Hoang, S. A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., . . . Van Zwieten, L. (2022). Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 67(2), 150-200. https://doi.org/10.1080/09506608.2021.1922047.

Chaubey, A. K., Pratap, T., Preetiva, B., Patel, M., Singsit, J. S., Pittman, C. U., Jr., & Mohan, D. (2024). Definitive Review of Nanobiochar. ACS Omega, 9(11), 12331-12379. https://doi.org/10.1021/acsomega.3c07804.

Chen, X., Zhou, B., Wang, Q., Tao, W., & Lin, H. (2020). Nano-biochar reduced soil erosion and nitrate loss in sloping fields on the Loess Plateau of China. CATENA, 187, 104346. https://doi.org/10.1016/j.catena.2019.104346.

Dai, Q., Liu, Q., Yılmaz, M., & Zhang, X. (2022). Co-pyrolysis of sewage sludge and sodium lignosulfonate: Kinetic study and methylene blue adsorption properties of the biochar. Journal of Analytical and Applied Pyrolysis, 165, 105586. https://doi.org/10.1016/j.jaap.2022.105586.

Di Fraia, S., Shah, M., & Vanoli, L. (2023). A biomass-based polygeneration system for a historical building: A techno-economic and environmental analysis. Energy Conversion and Management, 291, 117336. https://doi.org/10.1016/j.enconman.2023.117336.

Dotaniya, M. L., Meena, M. D., Choudhary, R. L., Meena, M. K., Meena, V. D., Singh, H., . . . Singh, H. (2024). Dynamics of major plant nutrients and enzymatic activities in soil influenced by application of biochar and organic waste. PLOS ONE, 19(10), e0307487. https://doi.org/10.1371/journal.pone.0307487.

Fawzy, S., Osman, A. I., Mehta, N., Moran, D., Al-Muhtaseb, A. a. H., & Rooney, D. W. (2022). Atmospheric carbon removal via industrial biochar systems: A techno-economic-environmental study. Journal of Cleaner Production, 371, 133660. https://doi.org/10.1016/j.jclepro.2022.133660.

Garg, S., Bhavya Surendran, V. S., & Avanthi, A. (2024). Recent Trends and Applications of Biochar and Nanoparticles from Plant Biomass. In L. Kumar, N. Bharadvaja, R. Singh, & R. Anand (Eds.), Medicinal and Aromatic Plants: Current Research Status, Value-Addition to Their Waste, and Agro-Industrial Potential (Vol II) (pp. 203-216). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64601-0_14

Geetha, T., Smitha, J. K., Sebastian, M., Litty, M. I., Joseph, B., Joseph, J., & Nisha, T. S. (2024). Synthesis and characterization of nano iron oxide biochar composite for efficient removal of crystal violet from water. Heliyon, 10(21), e39450. https://doi.org/10.1016/j.heliyon.2024.e39450.

Guo, F., Bao, L., Wang, H., Larson, S. L., Ballard, J. H., Knotek-Smith, H. M., . . . Han, F. (2020). A simple method for the synthesis of biochar nanodots using hydrothermal reactor. MethodsX, 7, 101022. https://doi.org/10.1016/j.mex.2020.101022.

Hagemann, N., Joseph, S., Schmidt, H.-P., Kammann, C. I., Harter, J., Borch, T., . . . Kappler, A. (2017). Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications, 8(1), 1089. https://doi.org/10.1038/s41467-017-01123-0.

IPCC. (2001). Climate change 2007: Impacts, adaptation and vulnerability. Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/

Islam, M. S., Kwak, J.-H., Nzediegwu, C., Wang, S., Palansuriya, K., Kwon, E. E., . . . Chang, S. X. (2021). Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas. Environmental Pollution, 281, 117094. https://doi.org/10.1016/j.envpol.2021.117094.

Jeffery, S., Verheijen, F. G. A., van der Velde, M., & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144(1), 175-187. https://doi.org/10.1016/j.agee.2011.08.015.

Jiang, M., He, L., Niazi, N. K., Wang, H., Gustave, W., Vithanage, M., . . . Wang, Z. (2023). Nanobiochar for the remediation of contaminated soil and water: challenges and opportunities. Biochar, 5(1), 2. https://doi.org/10.1007/s42773-022-00201-x.

Jien, S.-H., & Wang, C.-S. (2013). Effects of biochar on soil properties and erosion potential in a highly weathered soil. CATENA, 110, 225-233. https://doi.org/10.1016/j.catena.2013.06.021.

Karinkanta, P., Ämmälä, A., Illikainen, M., & Niinimäki, J. (2018). Fine grinding of wood – Overview from wood breakage to applications. Biomass and Bioenergy, 113, 31-44. https://doi.org/10.1016/j.biombioe.2018.03.007.

Khaliq, H., Anwar, S., Shafiq, F., Ashraf, M., Zhang, L., Haider, I., & Khan, S. (2023). Interactive Effects of Soil and Foliar-Applied Nanobiochar on Growth, Metabolites, and Nutrient Composition in Daucus carota. Journal of Plant Growth Regulation, 42(6), 3715-3729. https://doi.org/10.1007/s00344-022-10832-w.

Khosravi, A., Zheng, H., Liu, Q., Hashemi, M., Tang, Y., & Xing, B. (2022). Production and characterization of hydrochars and their application in soil improvement and environmental remediation. Chemical Engineering Journal, 430, 133142. https://doi.org/10.1016/j.cej.2021.133142.

Kim, P., Johnson, A., Edmunds, C. W., Radosevich, M., Vogt, F., Rials, T. G., & Labbé, N. (2011). Surface Functionality and Carbon Structures in Lignocellulosic-Derived Biochars Produced by Fast Pyrolysis. Energy & Fuels, 25(10), 4693-4703. https://doi.org/10.1021/ef200915s.

Ku Aizuddin, K. N. A., Lai, K.-S., Baharum, N. A., Thau Lym Yong, W., Ngi Hoon, L., Abdul Hamid, M. Z., . . . Ong Abdullah, J. (2023). Bamboo for Biomass Energy Production. BioResources, 18(1), 2386-2407. https://ojs.bioresources.com/index.php/BRJ/article/view/22334.

Kumar, M., Xiong, X., Wan, Z., Sun, Y., Tsang, D. C. W., Gupta, J., . . . Ok, Y. S. (2020). Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresource Technology, 312, 123613. https://doi.org/10.1016/j.biortech.2020.123613.

Kumar, N. V., Sawargaonkar, G., Rani, C. S., Pasumarthi, R., Kale, S., Prakash, T. R., . . . Chandra, M. S. (2024). Harnessing the potential of pigeonpea and maize feedstock biochar for carbon sequestration, energy generation, and environmental sustainability. Bioresources and Bioprocessing, 11(1), 5. https://doi.org/10.1186/s40643-023-00719-3.

Kumar, N. V., Sawargaonkar, G. L., Rani, C. S., Singh, A., Prakash, T. R., Triveni, S., . . . Venkatesh, B. (2023). Comparative Analysis of Pigeonpea Stalk Biochar Characteristics and Energy Use under Different Biochar Production Methods. Sustainability, 15(19), 14394. https://doi.org/10.3390/su151914394.

Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char Sequestration in Terrestrial Ecosystems – A Review. Mitigation and Adaptation Strategies for Global Change, 11(2), 403-427. https://doi.org/10.1007/s11027-005-9006-5.

Lehmann, J., & Joseph, S. (Eds.). (2024). Biochar for environmental management: science, technology and implementation. Taylor & Francis. https://doi.org/10.4324/9780203762264.

Li, J., Dai, J., Liu, G., Zhang, H., Gao, Z., Fu, J., . . . Huang, Y. (2016). Biochar from microwave pyrolysis of biomass: A review. Biomass and Bioenergy, 94, 228-244. https://doi.org/10.1016/j.biombioe.2016.09.010.

Liu, G., Zheng, H., Jiang, Z., Zhao, J., Wang, Z., Pan, B., & Xing, B. (2018). Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability. Environmental Science & Technology, 52(18), 10369-10379. https://doi.org/10.1021/acs.est.8b01481.

Liu, X., Tang, J., Wang, L., Liu, Q., & Liu, R. (2019). A comparative analysis of ball-milled biochar, graphene oxide, and multi-walled carbon nanotubes with respect to toxicity induction in Streptomyces. Journal of Environmental Management, 243, 308-317. https://doi.org/10.1016/j.jenvman.2019.05.034.

Lyu, H., Gao, B., He, F., Zimmerman, A. R., Ding, C., Huang, H., & Tang, J. (2018). Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environmental Pollution, 233, 54-63. https://doi.org/10.1016/j.envpol.2017.10.037.

Ma, S., Jing, F., Sohi, S. P., & Chen, J. (2019). New insights into contrasting mechanisms for PAE adsorption on millimeter, micron- and nano-scale biochar. Environmental Science and Pollution Research, 26(18), 18636-18650. https://doi.org/10.1007/s11356-019-05181-3.

Mašek, O., Budarin, V., Gronnow, M., Crombie, K., Brownsort, P., Fitzpatrick, E., & Hurst, P. (2013). Microwave and slow pyrolysis biochar—Comparison of physical and functional properties. Journal of Analytical and Applied Pyrolysis, 100, 41-48. https://doi.org/10.1016/j.jaap.2012.11.015.

Motasemi, F., & Afzal, M. T. (2013). A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews, 28, 317-330. https://doi.org/10.1016/j.rser.2013.08.008.

Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3), 247-255. https://doi.org/10.1016/j.geoderma.2011.04.021.

Naghdi, M., Taheran, M., Brar, S. K., Rouissi, T., Verma, M., Surampalli, R. Y., & Valero, J. R. (2017). A green method for production of nanobiochar by ball milling- optimization and characterization. Journal of Cleaner Production, 164, 1394-1405. https://doi.org/10.1016/j.jclepro.2017.07.084.

Naghdi, M., Taheran, M., Brar, S. K., Verma, M., Surampalli, R. Y., & Valero, J. R. (2015). Green and energy-efficient methods for the production of metallic nanoparticles. Beilstein Journal of Nanotechnology, 6, 2354-2376. https://doi.org/10.3762/bjnano.6.243.

Naseri-Minabi, G., Vahid, B., Reza, B. H., & and Bijanzadeh, E. (2024). Water use efficiency and grain yield of water stressed-field grown triticale as affected by combined application of biochar and biological fertilizer. Arid Land Research and Management, 1-20. https://doi.org/10.1080/15324982.2024.2434462.

Neogi, S., Sharma, V., Khan, N., Chaurasia, D., Ahmad, A., Chauhan, S., . . . Bhargava, P. C. (2022). Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy. Chemosphere, 293, 133474. https://doi.org/10.1016/j.chemosphere.2021.133474.

Okolie, J. A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2020). Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products. International Journal of Hydrogen Energy, 45(36), 18275-18288. https://doi.org/10.1016/j.ijhydene.2019.05.132.

Oleszczuk, P., Ćwikła-Bundyra, W., Bogusz, A., Skwarek, E., & Ok, Y. S. (2016). Characterization of nanoparticles of biochars from different biomass. Journal of Analytical and Applied Pyrolysis, 121, 165-172. https://doi.org/10.1016/j.jaap.2016.07.017.

Osman, A. I., Fawzy, S., Farghali, M., El-Azazy, M., Elgarahy, A. M., Fahim, R. A., . . . Rooney, D. W. (2022). Biochar for agronomy, animal farming, anaerobic digestion, composting, water treatment, soil remediation, construction, energy storage, and carbon sequestration: a review. Environmental Chemistry Letters, 20(4), 2385-2485. https://doi.org/10.1007/s10311-022-01424-x.

Pang, S., Lin, Z., Li, J., Zhang, Y., Mishra, S., Bhatt, P., & Chen, S. (2022). Microbial Degradation of Aldrin and Dieldrin: Mechanisms and Biochemical Pathways [Review]. Frontiers in Microbiology, Volume 13 - 2022. https://doi.org/10.3389/fmicb.2022.713375.

Pasumarthi, R., Sawargaonkar, G., Kale, S., Kumar, N. V., Choudhari, P. L., Singh, R., . . . Jat, M. L. (2024). Innovative bio-pyrolytic method for efficient biochar production from maize and pigeonpea stalks and their characterization. Journal of Cleaner Production, 448, 141573. https://doi.org/10.1016/j.jclepro.2024.141573.

Pathak, H. K., Seth, C. S., Chauhan, P. K., Dubey, G., Singh, G., Jain, D., . . . Khoo, K. S. (2024). Recent advancement of nano-biochar for the remediation of heavy metals and emerging contaminants: Mechanism, adsorption kinetic model, plant growth and development. Environmental Research, 255, 119136. https://doi.org/10.1016/j.envres.2024.119136.

Patro, A., Dwivedi, S., Thakur, A., Sahoo, P. K., & Biswas, J. K. (2024). Recent approaches and advancement in biochar-based environmental sustainability: Is biochar fulfilling the sustainable development goals? iScience, 27(9), 110812. https://doi.org/10.1016/j.isci.2024.110812.

Ponnusamy, V. K., Nagappan, S., Bhosale, R. R., Lay, C.-H., Duc Nguyen, D., Pugazhendhi, A., . . . Kumar, G. (2020). Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications. Bioresource Technology, 310, 123414. https://doi.org/10.1016/j.biortech.2020.123414.

Qian, L., Zhang, W., Yan, J., Han, L., Gao, W., Liu, R., & Chen, M. (2016). Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures. Bioresource Technology, 206, 217-224. https://doi.org/10.1016/j.biortech.2016.01.065.

Raczkiewicz, M., Ostolska, I., Mašek, O., & Oleszczuk, P. (2024). Effect of the pyrolysis conditions and type of feedstock on nanobiochars obtained as a result of ball milling. Journal of Cleaner Production, 458, 142456. https://doi.org/10.1016/j.jclepro.2024.142456.

Radovic, L. R. (2008). Physicochemical Properties of Carbon Materials: A Brief Overview. In Carbon Materials for Catalysis (pp. 1-44). https://doi.org/10.1002/9780470403709.ch1

Rajput, V. D., Minkina, T., Ahmed, B., Singh, V. K., Mandzhieva, S., Sushkova, S., . . . Wang, B. (2022). Nano-biochar: A novel solution for sustainable agriculture and environmental remediation. Environmental Research, 210, 112891. https://doi.org/10.1016/j.envres.2022.112891.

Ramadan, M. M., Asran, A., & Abd-Elsalam, K. A. (2020). 16 - Micro/nano biochar for sustainable plant health: Present status and future prospects. In K. A. Abd-Elsalam (Ed.), Carbon Nanomaterials for Agri-Food and Environmental Applications (pp. 323-357). Elsevier. https://doi.org/10.1016/B978-0-12-819786-8.00016-5

Ramanayaka, S., Vithanage, M., Alessi, D. S., Liu, W.-J., Jayasundera, A. C. A., & Ok, Y. S. (2020). Nanobiochar: production, properties, and multifunctional applications. Environmental Science: Nano, 7(11), 3279-3302. https://doi.org/10.1039/D0EN00486C.

Ramzan, M., Zia, A., Naz, G., Shahid, M., Shah, A. A., & Farid, G. (2023). Effect of nanobiochar (nBC) on morpho-physio-biochemical responses of black cumin (Nigella sativa L.) in Cr-spiked soil. Plant Physiology and Biochemistry, 196, 859-867. https://doi.org/10.1016/j.plaphy.2023.02.037.

Sandhya, V., Pillai, R., Balan, R., R, V., L, R., & V, R. (2024). Nanoarchitectonics of hydrothermal carbonized sugarcane juice-derived biochar for high supercapacitance and dye adsorption performance. Nano-Structures & Nano-Objects, 39, 101249. https://doi.org/10.1016/j.nanoso.2024.101249.

Sani, M. N. H., Amin, M., Siddique, A. B., Nasif, S. O., Ghaley, B. B., Ge, L., . . . Yong, J. W. H. (2023). Waste-derived nanobiochar: A new avenue towards sustainable agriculture, environment, and circular bioeconomy. Science of The Total Environment, 905, 166881. https://doi.org/10.1016/j.scitotenv.2023.166881.

Saraugi, S. S., & Routray, W. (2024). Advances in sustainable production and applications of nano-biochar. Science of The Total Environment, 955, 176883. https://doi.org/10.1016/j.scitotenv.2024.176883.

Sarmah, M., Borgohain, A., Saikia, J., Deka, D., Malakar, H., Khare, P., & Karak, T. (2023). Physical Activation and Nanoscale Transformation of Biochar Using Different Mechanochemical Techniques. In D. Mishra, R. Singh, & P. Khare (Eds.), Biochar-Based Nanocomposites for Contaminant Management: Synthesis, Contaminants Removal, and Environmental Sustainability (pp. 21-32). Springer International Publishing. https://doi.org/10.1007/978-3-031-28873-9_2

Shen, Y., Tang, H., Wu, W., Shang, H., Zhang, D., Zhan, X., & Xing, B. (2020). Role of nano-biochar in attenuating the allelopathic effect from Imperata cylindrica on rice seedlings. Environmental Science: Nano, 7(1), 116-126. https://doi.org/10.1039/C9EN00828D.

Singh, A., Rawat, S., Rajput, V. D., Minkina, T., Mandzhieva, S., Eloyan, A., . . . Ghazaryan, K. (2024). Nanotechnology Products in Agriculture and Environmental Protection: Advances and Challenges. Egyptian Journal of Soil Science, 64(4), 1355-1378. https://doi.org/10.21608/ejss.2024.300047.1802.

Singh, H., Northup, B. K., Rice, C. W., & Prasad, P. V. V. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar, 4(1), 8. https://doi.org/10.1007/s42773-022-00138-1.

Smith, S. E., Smith, F. A., & Jakobsen, I. (2003). Mycorrhizal Fungi Can Dominate Phosphate Supply to Plants Irrespective of Growth Responses. Plant Physiology, 133(1), 16-20. http://www.jstor.org/stable/4281312.

Soltaniband, V., Brégard, A., Gaudreau, L., & Dorais, M. (2022). Biostimulants Promote Plant Development, Crop Productivity, and Fruit Quality of Protected Strawberries. Agronomy, 12(7), 1684. https://doi.org/10.3390/agronomy12071684.

Song, B., Cao, X., Gao, W., Aziz, S., Gao, S., Lam, C.-H., & Lin, R. (2022). Preparation of nano-biochar from conventional biorefineries for high-value applications. Renewable and Sustainable Energy Reviews, 157, 112057. https://doi.org/10.1016/j.rser.2021.112057.

Song, B., Chen, M., Zhao, L., Qiu, H., & Cao, X. (2019). Physicochemical property and colloidal stability of micron- and nano-particle biochar derived from a variety of feedstock sources. Science of The Total Environment, 661, 685-695. https://doi.org/10.1016/j.scitotenv.2019.01.193.

Statista. (2024). Agriculture emissions worldwide - statistics & facts. https://www.statista.com/topics/10348/agriculture-emissions-worldwide/#topicOverview

Sultan, H., Li, Y., Ahmed, W., yixue, M., Shah, A., Faizan, M., . . . Khan, M. N. (2024). Biochar and nano biochar: Enhancing salt resilience in plants and soil while mitigating greenhouse gas emissions: A comprehensive review. Journal of Environmental Management, 355, 120448. https://doi.org/10.1016/j.jenvman.2024.120448.

Titirici, M.-M., Thomas, A., & Antonietti, M. (2007). Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New Journal of Chemistry, 31(6), 787-789. https://doi.org/10.1039/B616045J.

Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191-215. https://doi.org/10.1007/s11157-020-09523-3.

Usharani, K., Roopashree, K., & Naik, D. (2019). Role of soil physical, chemical and biological properties for soil health improvement and sustainable agriculture. Journal of Pharmacognosy and Phytochemistry, 8(5), 1256-1267. https://www.phytojournal.com/archives/2019.v8.i5.9750/role-of-soil-physical-chemical-and-biological-properties-for-soil-health-improvement-and-sustainable-agriculture.

Wallace, C. A., Afzal, M. T., & Saha, G. C. (2019). Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar. Bioresources and Bioprocessing, 6(1), 33. https://doi.org/10.1186/s40643-019-0268-2.

Wang, H.-k., Wu, Y.-b., Liu, J.-p., & Xue, J.-h. (2022). A Review of Research Advances in the Effects of Biochar on Soil Nitrogen Cycling and Its Functional Microorganisms. Journal of Ecology and Rural Environment, 38(6), 689-701. https://doi.org/10.19741/j.issn.1673-4831.2021.0313.

Wang, L., O’Connor, D., Rinklebe, J., Ok, Y. S., Tsang, D. C. W., Shen, Z., & Hou, D. (2020). Biochar Aging: Mechanisms, Physicochemical Changes, Assessment, And Implications for Field Applications. Environmental Science & Technology, 54(23), 14797-14814. https://doi.org/10.1021/acs.est.0c04033.

Wang, W., Lin, J., Shao, S., Chen, H., Dai, J., & Yang, Y. (2023). Enhanced adsorption of benzo(a)pyrene in soil by porous biochar: Adsorption kinetics, thermodynamics, and mechanisms. Journal of Environmental Chemical Engineering, 11(1), 109002. https://doi.org/10.1016/j.jece.2022.109002.

Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240-261. https://doi.org/10.1016/j.fuel.2017.12.054.

Xiang, W., Zhang, X., Chen, K., Fang, J., He, F., Hu, X., . . . Gao, B. (2020). Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs). Chemical Engineering Journal, 385, 123842. https://doi.org/10.1016/j.cej.2019.123842.

Xiao, D., Yuan, D., He, H., & Gao, M. (2013). Microwave assisted one-step green synthesis of fluorescent carbon nanoparticles from ionic liquids and their application as novel fluorescence probe for quercetin determination. Journal of Luminescence, 140, 120-125. https://doi.org/10.1016/j.jlumin.2013.02.032.

Xie, T., Sadasivam, B. Y., Reddy, K. R., Wang, C., & Spokas, K. (2016). Review of the Effects of Biochar Amendment on Soil Properties and Carbon Sequestration. Journal of Hazardous, Toxic, and Radioactive Waste, 20(1), 04015013. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000293.

Xu, J., Xie, Y., Yao, Q., Lv, L., & Chu, H. (2024). Advances in sustainable nano-biochar: precursors, synthesis methods and applications. Nanoscale, 16(32), 15009-15032. https://doi.org/10.1039/D4NR01694G.

Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., & Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20(1), 358-368. https://doi.org/10.1007/s11356-012-0873-5.

Xu, Y., Bai, T., Yan, Y., Zhao, Y., Yuan, L., Pan, P., & Jiang, Z. (2020). Enhanced removal of hexavalent chromium by different acid-modified biochar derived from corn straw: behavior and mechanism. Water Science and Technology, 81(10), 2270-2280. https://doi.org/10.2166/wst.2020.290.

Yang, X., Wang, H., Strong, P. J., Xu, S., Liu, S., Lu, K., . . . Chen, X. (2017). Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors. Energies, 10(4), 469. https://doi.org/10.3390/en10040469.

Yang, Y., Zhou, B., Hu, Z., & Lin, H. (2020). The effects of nano-biochar on maize growth in northern Shaanxi Province on the Loess Plateau. Applied Ecology & Environmental Research, 18(2), 2863-28677. https://aloki.hu/pdf/1802_28632877.pdf.

Yao, Z., Yang, L., Song, N., Wang, C., & Jiang, H. (2020). Effect of organic matter derived from algae and macrophyte on anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a shallow freshwater lake. Environmental Science and Pollution Research, 27(21), 25899-25907. https://doi.org/10.1007/s11356-019-06793-5.

Yek, P. N. Y., Liew, R. K., Osman, M. S., Lee, C. L., Chuah, J. H., Park, Y.-K., & Lam, S. S. (2019). Microwave steam activation, an innovative pyrolysis approach to convert waste palm shell into highly microporous activated carbon. Journal of Environmental Management, 236, 245-253. https://doi.org/10.1016/j.jenvman.2019.01.010.

Yi, Y., Huang, Z., Lu, B., Xian, J., Tsang, E. P., Cheng, W., . . . Fang, Z. (2020). Magnetic biochar for environmental remediation: A review. Bioresource Technology, 298, 122468. https://doi.org/10.1016/j.biortech.2019.122468.

Yu, J., Wang, D., Geetha, N., Khawar, K. M., Jogaiah, S., & Mujtaba, M. (2021). Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review. Carbohydrate Polymers, 261, 117904. https://doi.org/10.1016/j.carbpol.2021.117904.

Yuan, H., Chen, L., Cao, Z., & Hong, F. F. (2020). Enhanced decolourization efficiency of textile dye Reactive Blue 19 in a horizontal rotating reactor using strips of BNC-immobilized laccase: Optimization of conditions and comparison of decolourization efficiency. Biochemical Engineering Journal, 156, 107501. https://doi.org/10.1016/j.bej.2020.107501.

Yuan, Y., Nan, Z., & and Hu, X. (2020). Effects of wet and dry ball milling on the physicochemical properties of sawdust derived-biochar. Instrumentation Science & Technology, 48(3), 287-300. https://doi.org/10.1080/10739149.2019.1708751.

Yue, L., Lian, F., Han, Y., Bao, Q., Wang, Z., & Xing, B. (2019). The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: Implications for agronomic benefits and potential risk. Science of The Total Environment, 656, 9-18. https://doi.org/10.1016/j.scitotenv.2018.11.364.

Zhang, H., Chen, C., Gray, E. M., & Boyd, S. E. (2017). Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy. Biomass and Bioenergy, 105, 136-146. https://doi.org/10.1016/j.biombioe.2017.06.024.

Zhang, T., Yang, X., Zeng, Z., Li, Q., Yu, J., Deng, H., . . . Pi, K. (2024). Combined Remediation Effects of Sewage Sludge and Phosphate Fertilizer on Pb-Polluted Soil from a Pb-Acid Battery Plant. Environmental Management, 74(5), 928-941. https://doi.org/10.1007/s00267-024-01948-8.

Zhao, J., Shen, X.-J., Domene, X., Alcañiz, J.-M., Liao, X., & Palet, C. (2019). Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Scientific Reports, 9(1), 9869. https://doi.org/10.1038/s41598-019-46234-4.

Zheng, L., Gao, Y., Du, J., Zhang, W., Huang, Y., Wang, L., . . . Pan, X. (2020). A novel, recyclable magnetic biochar modified by chitosan–EDTA for the effective removal of Pb(ii) from aqueous solution. RSC Advances, 10(66), 40196-40205. https://doi.org/10.1039/D0RA07499C.

Zong, Y., Chen, H., Malik, Z., Xiao, Q., & Lu, S. (2022). Comparative study on the potential risk of contaminated-rice straw, its derived biochar and phosphorus modified biochar as an amendment and their implication for environment. Environmental Pollution, 293, 118515. https://doi.org/10.1016/j.envpol.2021.118515.

Zortea, R. B., Maciel, V. G., & Passuello, A. (2018). Sustainability assessment of soybean production in Southern Brazil: A life cycle approach. Sustainable Production and Consumption, 13, 102-112. https://doi.org/10.1016/j.spc.2017.11.002.

Zulfiqar, F., Wei, X., Shaukat, N., Chen, J., Raza, A., Younis, A., . . . Siddique, K. H. M. (2021). Effects of Biochar and Biochar–Compost Mix on Growth, Performance and Physiological Responses of Potted Alpinia zerumbet. Sustainability, 13(20), 11226. https://doi.org/10.3390/su132011226.

Refbacks

  • There are currently no refbacks.