The influence of plastic mulch degradation on microplastic contamination in agricultural soils under different climatic conditions

Muhammad Firman Azima, Mersi Kurniati, Irmansyah Irmansyah, Rofiqul Umam

Abstract

Plastic mulch is widely used in agriculture to improve crop productivity by regulating soil temperature, retaining moisture, and suppressing weed growth. However, its degradation produces microplastics that can accumulate in the soil, disrupt microbial communities, and potentially enter the food chain. This study examines microplastic contamination in agricultural soils under different climatic conditions: Bogor (humid) and Lombok (hot and dry). Various analytical techniques were employed to characterize material degradation, including FTIR spectroscopy, SEM, UV-Vis, and thermal conductivity measurements. The results show that differences in climate and environmental factors such as high temperature, UV exposure, and microbial activity can accelerate mulch degradation, resulting in higher microplastic concentrations in Lombok (455 ± 57.74 particles kg-1) compared to Bogor (265 ± 43.59 particles kg-1). FTIR analysis confirmed the presence of oxidation-derived functional groups (C=O, O-H), thermal analysis indicated a decrease in the material's thermal conductivity, UV-Vis revealed increased polymer chain scission, and SEM showed significant surface degradation. These findings highlight the environmental risks of plastic mulch use and underscore the importance of adopting more sustainable alternatives to reduce microplastic pollution in agricultural soils.

Keywords

Agricultural sustainability; Chemical functional group; Polyethylene; Soil pollution

Full Text:

PDF

References

Abbate, C., Scavo, A., Pesce, G. R., Fontanazza, S., Restuccia, A., & Mauromicale, G. (2023). Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review. Agriculture, 13(1), 197. https://doi.org/10.3390/agriculture13010197

Baharuddin, A., Asran, A., Ikhtiar, M., & Suhermi. (2023). Spatial Analysis of Microplastics Using the FT-IR (Fourier Transform Infrared) Method in Green Mussel Farmers' Feces. Window of Health : Jurnal Kesehatan, 331-343. https://jurnal.fkmumi.ac.id/index.php/woh/article/view/1108

Bai, R., Li, Z., Liu, Q., Liu, Q., Cui, J., & He, W. (2024). The reciprocity principle in mulch film deterioration and microplastic generation [10.1039/D3EM00402C]. Environmental Science: Processes & Impacts, 26(1), 8-15. https://doi.org/10.1039/D3EM00402C

Belhachemi, A., Maatoug, M. h., & Canela-Garayoa, R. (2022). Comparative analysis by UV-vis and FT-IR spectroscopy of the chemical degradation of polyethylene used as greenhouse cover film. Journal of Elastomers & Plastics, 54(6), 891-905. https://doi.org/10.1177/00952443221077439

Bo, L., Guan, H., & Mao, X. (2023). Diagnosing crop water status based on canopy temperature as a function of film mulching and deficit irrigation. Field Crops Research, 304, 109154. https://doi.org/10.1016/j.fcr.2023.109154

Broda, J., Gawłowski, A., Rom, M., Kukulski, T., & Kobiela-Mendrek, K. (2024). Thermoregulation and Soil Moisture Management in Strawberry Cultivation Mulched with Sheep Wool. Applied Sciences, 14(23), 10884. https://doi.org/10.3390/app142310884

Carstensen, L., Beil, S., Börnick, H., & Stolte, S. (2022). Structure-related endocrine-disrupting potential of environmental transformation products of benzophenone-type UV filters: A review. Journal of Hazardous Materials, 430, 128495. https://doi.org/10.1016/j.jhazmat.2022.128495

Chen, C., Huang, H., Abdalkarim, S. Y. H., Asad, R. A. M., & Yu, H.-Y. (2025). Establishing a predictive model for ultraviolet degradation to rapidly estimate the service life of poly (lactic acid)-based mulch film for agricultural protection. Journal of Cleaner Production, 508, 145587. https://doi.org/10.1016/j.jclepro.2025.145587

Chong, C. S., Ishak, I., Mahat, R. H., & Amin, Y. M. (1997). UV-VIS and FTIR spectral studies of CR-39 plastics irradiated with X-rays. Radiation Measurements, 28(1), 119-122. https://doi.org/10.1016/S1350-4487(97)00051-6

Chou, S.-H., Chuang, Y.-K., Lee, C.-M., Chang, Y.-S., Jhang, Y.-J., Yeh, C.-W., . . . Hsiao, I. L. (2022). Visualization and (Semi-)quantification of submicrometer plastics through scanning electron microscopy and time-of-flight secondary ion mass spectrometry. Environmental Pollution, 300, 118964. https://doi.org/10.1016/j.envpol.2022.118964

Cunsolo, S., Williams, J., Hale, M., Read, D. S., & Couceiro, F. (2021). Optimising sample preparation for FTIR-based microplastic analysis in wastewater and sludge samples: multiple digestions. Analytical and Bioanalytical Chemistry, 413(14), 3789-3799. https://doi.org/10.1007/s00216-021-03331-6

Doğan, M. (2021). Ultraviolet light accelerates the degradation of polyethylene plastics. Microscopy Research and Technique, 84(11), 2774-2783. https://doi.org/10.1002/jemt.23838

Dong, Y., Ren, L., Jia, X., Liao, X., Huang, L., Zhang, X., . . . Xu, L. (2025). Microplastics decrease soil compressibility but have no major impact on soil physical properties. Soil and Tillage Research, 253, 106688. https://doi.org/10.1016/j.still.2025.106688

Du, B., Lee, C., & Ji, Y. (2024). Study of Factors Affecting UV-Induced Photo-Degradation in Different Types of Polyethylene Sheets. Polymers, 16(19), 2709. https://doi.org/10.3390/polym16192709

Ebert, H.-P., & Vidi, S. (2024). Correct Use of the Guarded-Hot-Plate Method for Thermal Conductivity Measurements on Solids. International Journal of Thermophysics, 45(2), 20. https://doi.org/10.1007/s10765-023-03307-x

En-Nejmy, K., El Fels, L., El Hayany, B., & Hafidi, M. (2025). Microplastics behavior and distribution in mulched agricultural soil under semi-arid climate: A case study from Morocco. Pedosphere. https://doi.org/10.1016/j.pedsph.2025.05.003

Fajri, N., Cahya, E. P., Riandi, & Sriyati, S. (2024). Validasi Metode Analisis Konsentrasi Larutan Kopi berdasarkan Spektroskopi Absorpsi Cahaya. JIPFRI (Jurnal Inovasi Pendidikan Fisika dan Riset Ilmiah), 8(1), 51-59. https://doi.org/10.30599/jipfri.v8i1.2101

Fan, D., Jia, G., Wang, Y., & Yu, X. (2023). The effectiveness of mulching practices on water erosion control: A global meta-analysis. Geoderma, 438, 116643. https://doi.org/10.1016/j.geoderma.2023.116643

Fernández, C. (2023). Effects of post-fire application of straw mulch strips on soil erosion, soil moisture and vegetation regeneration in European dry heathlands in NW Spain. Ecological Engineering, 196, 107095. https://doi.org/10.1016/j.ecoleng.2023.107095

Gkoutselis, G., Rohrbach, S., Harjes, J., Obst, M., Brachmann, A., Horn, M. A., & Rambold, G. (2021). Microplastics accumulate fungal pathogens in terrestrial ecosystems. Scientific Reports, 11(1), 13214. https://doi.org/10.1038/s41598-021-92405-7

Guo, K., Cao, M., Gu, F., Wu, F., Yang, H., Xu, H., & Hu, Z. (2023). Mechanical Properties of Metallocene Linear Low-Density Polyethylene Mulch Films Correlate with Ultraviolet Irradiation and Film Thickness. Sustainability, 15(8), 6713. https://doi.org/10.3390/su15086713

Hou, L., Xi, J., Chen, X., Li, X., Ma, W., Lu, J., . . . Lin, Y. B. (2019). Biodegradability and ecological impacts of polyethylene-based mulching film at agricultural environment. Journal of Hazardous Materials, 378, 120774. https://doi.org/10.1016/j.jhazmat.2019.120774

Hudson, T. B., Alford, A. M., Bilbo, T. R., Boyle, S. C., Doughty, H. B., Kuhar, T. P., . . . Blubaugh, C. K. (2023). Living mulches reduce natural enemies when combined with frequent pesticide applications. Agriculture, Ecosystems & Environment, 357, 108680. https://doi.org/10.1016/j.agee.2023.108680

Jemec Kokalj, A., Dolar, A., Nagode, A., Drobne, D., Kuljanin, A., & Kalčíková, G. (2024). Response of terrestrial crustacean Porcellio scaber and mealworm Tenebrio molitor to non-degradable and biodegradable fossil-based mulching film microplastics. Science of The Total Environment, 951, 175379. https://doi.org/10.1016/j.scitotenv.2024.175379

Ju, T., Yang, K., Ji, D., Chang, L., Alquiza, M. d. J. P., & Li, Y. (2025). Microplastics influence nutrient content and quality of salt-affected agricultural soil under plastic mulch. Environmental Research, 264, 120376. https://doi.org/10.1016/j.envres.2024.120376

Junga, R., Wzorek, M., Sobek, S., Sajdak, M., & Yilmaz, E. (2024). Co-pyrolysis of animal manure and plastic waste study using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 181, 106598. https://doi.org/10.1016/j.jaap.2024.106598

Kim, D., Lee, S., & Yang, I. (2021). Verification of thermal conductivity measurements using guarded hot plate and heat flow meter methods. Journal of the Korean Physical Society, 78(12), 1196-1202. https://doi.org/10.1007/s40042-021-00177-0

Klempová, S., Oravec, M., & Vizárová, K. (2023). Analysis of thermally and UV–Vis aged plasticized PVC using UV–Vis, ATR-FTIR and Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 294, 122541. https://doi.org/10.1016/j.saa.2023.122541

Kumar, R., Sharma, S., Pathak, D., Dhiman, N., & Arora, N. (2017). Ionic conductivity, FTIR and thermal studies of nano-composite plasticized proton conducting polymer electrolytes. Solid State Ionics, 305, 57-62. https://doi.org/10.1016/j.ssi.2017.04.020

Maiket, Y., Yeetsorn, R., Surathin, N., Jirawutthiwongchai, J., & Boonyarattanakalin, S. (2025). The role of TPS in promoting the disintegration of LDPE/TPS blends to unravel the degradation mechanism of plastic films. Journal of Hazardous Materials, 488, 137400. https://doi.org/10.1016/j.jhazmat.2025.137400

Mansoor, Z., Tchuenbou-Magaia, F., Kowalczuk, M., Adamus, G., Manning, G., Parati, M., . . . Khan, H. (2022). Polymers Use as Mulch Films in Agriculture—A Review of History, Problems and Current Trends. Polymers, 14(23), 5062. https://doi.org/10.3390/polym14235062

Marczak-Grzesik, M., Tarach, K. A., Olszewska, A., Sobańska, K., Kowalczyk, A., & Góra-Marek, K. (2025). UV-vis methodology for evaluation of adsorption of polystyrene nanoplastics by zeolite adsorbents: A case of carboxylate-modified polystyrene. Journal of Environmental Chemical Engineering, 13(4), 117306. https://doi.org/10.1016/j.jece.2025.117306

Mecozzi, M., Pietroletti, M., & Monakhova, Y. B. (2016). FTIR spectroscopy supported by statistical techniques for the structural characterization of plastic debris in the marine environment: Application to monitoring studies. Marine Pollution Bulletin, 106(1), 155-161. https://doi.org/10.1016/j.marpolbul.2016.03.012

Merino, D., Gutiérrez, T. J., & Alvarez, V. A. (2019). Structural and Thermal Properties of Agricultural Mulch Films Based on Native and Oxidized Corn Starch Nanocomposites. Starch - Stärke, 71(7-8), 1800341. https://doi.org/10.1002/star.201800341

Merino, D., Zych, A., & Athanassiou, A. (2022). Biodegradable and Biobased Mulch Films: Highly Stretchable PLA Composites with Different Industrial Vegetable Waste. ACS Applied Materials & Interfaces, 14(41), 46920-46931. https://doi.org/10.1021/acsami.2c10965

Miao, H., Zhang, S., Gao, W., Zhou, J., Cai, H., Wu, L., . . . Liu, T. (2024). Microplastics occurrence and distribution characteristics in mulched agricultural soils of Guizhou province. Scientific Reports, 14(1), 21505. https://doi.org/10.1038/s41598-024-72829-7

Miao, J., Huang, W., Pan, R., & Zhou, K. (2023). Research progress and hotspot analysis of soil microplastics: a bibliometrics-based review [Review]. Frontiers in Environmental Science, Volume 11 - 2023. https://doi.org/10.3389/fenvs.2023.1297646

Mitu, F. A., Ashraful, M., Kader, M. A., Talukder, F. U., Akter, T., Akter, N., . . . Singha, A. (2025). Preserving soil properties and enhancing cauliflower yield with black plastic mulch in Bangladesh. Sains Tanah Journal of Soil Science and Agroclimatology, 21(2), 8. https://doi.org/10.20961/stjssa.v21i2.89262

Narloch, I., Gackowska, A., & Wejnerowska, G. (2022). Microplastic in the Baltic Sea: A review of distribution processes, sources, analysis methods and regulatory policies. Environmental Pollution, 315, 120453. https://doi.org/10.1016/j.envpol.2022.120453

Nguyen, M.-K., Rakib, M. R. J., Hwangbo, M., & Kim, J. (2025). Microplastic accumulation in soils: Unlocking the mechanism and biodegradation pathway. Journal of Hazardous Materials Advances, 17, 100629. https://doi.org/10.1016/j.hazadv.2025.100629

Noor-ul-Ain, Aslam, A., & Haider, F. U. (2022). Effects of Mulching on Soil Biota and Biological Indicators of Soil Quality. In K. Akhtar, M. Arif, M. Riaz, & H. Wang (Eds.), Mulching in Agroecosystems: Plants, Soil & Environment (pp. 15-40). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6410-7_2

Nugraha, F., Kurniawan, H., & Yastiara, I. (2023). Penetapan Kadar Paracetamol dalam Jamu di Kota Pontianak Menggunakan Instrumen Spektrofotometri UV-Vis. Indonesian Journal of Pharmaceutical Education, 3(1), 77-87. https://doi.org/10.37311/ijpe.v3i1.18876

Okubo, K., Manago, G., Tanabe, T., Yu, J., Liu, X., & Sasaki, T. (2025). Identifying plastic materials in post-consumer food containers and packaging waste using terahertz spectroscopy and machine learning. Waste Management, 196, 32-41. https://doi.org/10.1016/j.wasman.2025.02.018

Olesen, K. B., van Alst, N., Simon, M., Vianello, A., Liu, F., & Vollertsen, J. (2017). Analysis of Microplastics using FTIR Imaging [Journal article]. Agilent Application Note Environment. https://www.agilent.com/cs/library/applications/5991-8271EN_microplastics_ftir_application.pdf

Pahlawan, M. F. R., Kim, Y., Aline, U., Zahroh, A., Masithoh, R. E., Kim, M. S., . . . Cho, B.-K. (2025). Non-destructive identification of microplastics in soil using spectroscopy and hyperspectral imaging. TrAC Trends in Analytical Chemistry, 187, 118216. https://doi.org/10.1016/j.trac.2025.118216

Peksen, A., Ates, U., Ic, S., & Ozturk, B. (2023). Impact of Biodegradable Mulches on Qualitative Characteristics and Bioactive Compounds of Capia Pepper (Capsicum Annum L.) Under Cold Storage. Journal of Soil Science and Plant Nutrition, 23(3), 4412-4425. https://doi.org/10.1007/s42729-023-01359-4

Qiang, L., Hu, H., Li, G., Xu, J., Cheng, J., Wang, J., & Zhang, R. (2023). Plastic mulching, and occurrence, incorporation, degradation, and impacts of polyethylene microplastics in agroecosystems. Ecotoxicology and Environmental Safety, 263, 115274. https://doi.org/10.1016/j.ecoenv.2023.115274

Rahim, H. U., Akbar, W. A., Begum, N., Uddin, M., Qaswar, M., & Khan, N. (2022). Mulches and Microplastic Pollution in the Agroecosystem. In K. Akhtar, M. Arif, M. Riaz, & H. Wang (Eds.), Mulching in Agroecosystems: Plants, Soil & Environment (pp. 315-328). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6410-7_18

Rodriguez, N., Xing, F., Gillor, O., Guvendiren, M., & Axe, L. (2025). Methodology development: evaluation of structural, thermal, and mechanical properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends for biodegradable mulch. Polymer Bulletin, 82(9), 3685-3713. https://doi.org/10.1007/s00289-025-05681-y

Romano, I., Ventorino, V., Schettino, M., Magaraci, G., & Pepe, O. (2024). Changes in Soil Microbial Communities Induced by Biodegradable and Polyethylene Mulch Residues Under Three Different Temperatures. Microbial Ecology, 87(1), 101. https://doi.org/10.1007/s00248-024-02420-0

Ryu, Y., Bouharras, F. E., Cha, M., Mudondo, J., Kim, Y., Ramakrishnan, S. R., . . . Kim, H. T. (2025). Recent advancements in the evolution, production, and degradation of biodegradable mulch films: A review. Environmental Research, 277, 121629. https://doi.org/10.1016/j.envres.2025.121629

Salama, K., & Geyer, M. (2023). Plastic Mulch Films in Agriculture: Their Use, Environmental Problems, Recycling and Alternatives. Environments, 10(10), 179. https://doi.org/10.3390/environments10100179

Samphire, M., Chadwick, D. R., & Jones, D. L. (2023). Biodegradable plastic mulch films increase yield and promote nitrogen use efficiency in organic horticulture. Frontiers in Agronomy, Volume 5 - 2023. https://doi.org/10.3389/fagro.2023.1141608

Sandt, C., Waeytens, J., Deniset-Besseau, A., Nielsen-Leroux, C., & Réjasse, A. (2021). Use and misuse of FTIR spectroscopy for studying the bio-oxidation of plastics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 258, 119841. https://doi.org/10.1016/j.saa.2021.119841

Sang, T., Wallis, C. J., Hill, G., & Britovsek, G. J. P. (2020). Polyethylene terephthalate degradation under natural and accelerated weathering conditions. European Polymer Journal, 136, 109873. https://doi.org/10.1016/j.eurpolymj.2020.109873

Senevirathne, G. I., Gimhani, T. D. M., Reay, M. K., Perera, C., Ariyaratna, M., Karunarathna, A. K., . . . Chathurika, J. A. S. (2025). In situ degradation of three contrasting plastic mulch films under maize cultivation in tropical conditions. Environmental Advances, 20, 100628. https://doi.org/10.1016/j.envadv.2025.100628

Sintim, H. Y., Bary, A. I., Hayes, D. G., Wadsworth, L. C., Anunciado, M. B., English, M. E., . . . Flury, M. (2020). In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Science of The Total Environment, 727, 138668. https://doi.org/10.1016/j.scitotenv.2020.138668

Somanathan, H., Sathasivam, R., Sivaram, S., Mariappan Kumaresan, S., Muthuraman, M. S., & Park, S. U. (2022). An update on polyethylene and biodegradable plastic mulch films and their impact on the environment. Chemosphere, 307, 135839. https://doi.org/10.1016/j.chemosphere.2022.135839

Song, J., Jia, H., Wang, Y., Zhang, X., Yang, W., Zhang, T., . . . Wang, H. (2025). Evaluation of the Effects of Degradable Mulching Film on the Growth, Yield and Economic Benefit of Garlic. Agronomy, 15(1), 93. https://doi.org/10.3390/agronomy15010093

Stachowiak, T., Postawa, P., Malińska, K., Dróżdż, D., & Pudełko, A. (2022). Comparison of Physical and Thermal Properties of Mulching Films Made of Different Polymeric Materials. Materials, 15(21), 7610. https://doi.org/10.3390/ma15217610

Villegas-Camacho, O., Alejo-Eleuterio, R., Francisco-Valencia, I., Granda-Gutiérrez, E., Martínez-Gallegos, S., & Illescas, J. (2024). FTIR-Plastics: A Fourier Transform Infrared Spectroscopy dataset for the six most prevalent industrial plastic polymers. Data in Brief, 55, 110612. https://doi.org/10.1016/j.dib.2024.110612

Wang, C., Zeng, T., Gu, C., Zhu, S., Zhang, Q., & Luo, X. (2019). Photodegradation Pathways of Typical Phthalic Acid Esters Under UV, UV/TiO2, and UV-Vis/Bi2WO6 Systems. Frontiers in Chemistry, Volume 7 - 2019. https://doi.org/10.3389/fchem.2019.00852

Wang, T., Liu, L., Zhao, Q., Meng, Z., & Li, W. (2023). The aging of polyethylene mulch films in the presence of cadmium. Ecotoxicology and Environmental Safety, 266, 115569. https://doi.org/10.1016/j.ecoenv.2023.115569

Wang, T., Ma, Y., & Ji, R. (2021). Aging Processes of Polyethylene Mulch Films and Preparation of Microplastics with Environmental Characteristics. Bulletin of Environmental Contamination and Toxicology, 107(4), 736-740. https://doi.org/10.1007/s00128-020-02975-x

Wang, X., Ni, L., Zhang, C., Xu, Q., & Ye, S. (2025). Using a one-dimensional convolutional neural network on FTIR spectroscopy to measure the thickness of composite plastic films. Infrared Physics & Technology, 147, 105777. https://doi.org/10.1016/j.infrared.2025.105777

Wang, Y., Bai, R.-H., Liu, Q., Tang, Q.-X., Xie, C.-H., Richel, A., . . . He, W.-Q. (2025). Degradation of biodegradable plastic films in soil: microplastics formation and soil microbial community dynamics. Journal of Hazardous Materials, 492, 138250. https://doi.org/10.1016/j.jhazmat.2025.138250

Wei, H., Zhang, K., Chai, N., Wang, Y., Li, Y., Yang, J., . . . Zhang, F. (2024). Exploring low-carbon mulching strategies for maize and wheat on-farm: Spatial responses, factors and mitigation potential. Science of The Total Environment, 906, 167441. https://doi.org/10.1016/j.scitotenv.2023.167441

Xie, Y., Abdalkarim, S. Y. H., Adil Mahjoob, H., Chen, C., Huang, H., & Yu, H.-Y. (2025). Unveiling the impact of soil depth on degradation of durable nanocomposite mulch-derived residue migration dynamics in plant ecosystems. Journal of Hazardous Materials, 493, 138364. https://doi.org/10.1016/j.jhazmat.2025.138364

Xie, Z., Xiong, Q., Fang, Y., Zhang, Q., Liang, W., Cheng, J., . . . Zhao, J. (2023). Novel Biodegradable Composite Mulch Film Embedded with Temperature-Responsive Pesticide Microcapsules for Durable Control of Phytophthora Root Rot on Soybean. ACS Sustainable Chemistry & Engineering, 11(26), 9868-9879. https://doi.org/10.1021/acssuschemeng.3c02824

Yang, C., & Gao, X. (2022). Impact of microplastics from polyethylene and biodegradable mulch films on rice (Oryza sativa L.). Science of The Total Environment, 828, 154579. https://doi.org/10.1016/j.scitotenv.2022.154579

Yang, C., Zhang, N., Zhao, F., & Wang, J. (2025). Mulching practices decreased soil microbial carbon degradation potential under spring maize in the Loess Plateau of China. Agriculture, Ecosystems & Environment, 381, 109465. https://doi.org/10.1016/j.agee.2024.109465

Yang, Z., Zhang, J., Haruka, N., Murat, C., & Arakawa, H. (2024). Spectral analysis of environmental microplastic polyethylene (PE) using average spectra. Science of The Total Environment, 927, 171871. https://doi.org/10.1016/j.scitotenv.2024.171871

Yu, H., Zhang, M., Liu, H., Xiao, J., Men, J., Cernava, T., . . . Jin, D. (2025). Comparison of plastisphere microbiomes during the degradation of conventional and biodegradable mulching films. Journal of Hazardous Materials, 487, 137243. https://doi.org/10.1016/j.jhazmat.2025.137243

Zhang, J., Du, L., Xing, Z., Zhang, R., Li, F., Zhong, T., . . . Liu, X. (2023). Effects of dual mulching with wheat straw and plastic film under three irrigation regimes on soil nutrients and growth of edible sunflower. Agricultural Water Management, 288, 108453. https://doi.org/10.1016/j.agwat.2023.108453

Zhang, J., Wang, K., Hao, T., Zhang, J., Müller, C., Florent, P., . . . Liu, X. (2025). Long-term plastic film mulching promotes microplastic accumulation and alters gross nitrogen transformation in soil. Applied Soil Ecology, 208, 106007. https://doi.org/10.1016/j.apsoil.2025.106007

Zhang, W., Ma, J., Cui, Z., Xu, L., Liu, Q., Li, J., . . . Zeng, X. (2023). Effects of Biodegradable Plastic Mulch Film on Cabbage Agronomic and Nutritional Quality Traits, Soil Physicochemical Properties and Microbial Communities. Agronomy, 13(5), 1220. https://doi.org/10.3390/agronomy13051220

Zhang, Y., Feng, R., Nie, W., Wang, F., & Feng, S. (2020). Plastic Film Mulch Performed Better in Improving Heat Conditions and Drip Irrigated Potato Growth in Northwest China than in Eastern China. Water, 12(10), 2906. https://doi.org/10.3390/w12102906

Zhang, Z., Fan, X., Zhang, R., Pan, X., Zhang, X., Ding, Y., & Liu, Y. (2025). Biodegradation characterization and mechanism of low-density polyethylene by the enriched mixed-culture from plastic-contaminated soil. Journal of Hazardous Materials, 494, 138530. https://doi.org/10.1016/j.jhazmat.2025.138530

Refbacks

  • There are currently no refbacks.