The influence of plastic mulch degradation on microplastic contamination in agricultural soils under different climatic conditions
Abstract
Plastic mulch is widely used in agriculture to improve crop productivity by regulating soil temperature, retaining moisture, and suppressing weed growth. However, its degradation produces microplastics that can accumulate in the soil, disrupt microbial communities, and potentially enter the food chain. This study examines microplastic contamination in agricultural soils under different climatic conditions: Bogor (humid) and Lombok (hot and dry). Various analytical techniques were employed to characterize material degradation, including FTIR spectroscopy, SEM, UV-Vis, and thermal conductivity measurements. The results show that differences in climate and environmental factors such as high temperature, UV exposure, and microbial activity can accelerate mulch degradation, resulting in higher microplastic concentrations in Lombok (455 ± 57.74 particles kg-1) compared to Bogor (265 ± 43.59 particles kg-1). FTIR analysis confirmed the presence of oxidation-derived functional groups (C=O, O-H), thermal analysis indicated a decrease in the material's thermal conductivity, UV-Vis revealed increased polymer chain scission, and SEM showed significant surface degradation. These findings highlight the environmental risks of plastic mulch use and underscore the importance of adopting more sustainable alternatives to reduce microplastic pollution in agricultural soils.
Keywords
Full Text:
PDFReferences
Abbate, C., Scavo, A., Pesce, G. R., Fontanazza, S., Restuccia, A., & Mauromicale, G. (2023). Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review. Agriculture, 13(1), 197. https://doi.org/10.3390/agriculture13010197
Baharuddin, A., Asran, A., Ikhtiar, M., & Suhermi. (2023). Spatial Analysis of Microplastics Using the FT-IR (Fourier Transform Infrared) Method in Green Mussel Farmers' Feces. Window of Health : Jurnal Kesehatan, 331-343. https://jurnal.fkmumi.ac.id/index.php/woh/article/view/1108
Bai, R., Li, Z., Liu, Q., Liu, Q., Cui, J., & He, W. (2024). The reciprocity principle in mulch film deterioration and microplastic generation [10.1039/D3EM00402C]. Environmental Science: Processes & Impacts, 26(1), 8-15. https://doi.org/10.1039/D3EM00402C
Belhachemi, A., Maatoug, M. h., & Canela-Garayoa, R. (2022). Comparative analysis by UV-vis and FT-IR spectroscopy of the chemical degradation of polyethylene used as greenhouse cover film. Journal of Elastomers & Plastics, 54(6), 891-905. https://doi.org/10.1177/00952443221077439
Bo, L., Guan, H., & Mao, X. (2023). Diagnosing crop water status based on canopy temperature as a function of film mulching and deficit irrigation. Field Crops Research, 304, 109154. https://doi.org/10.1016/j.fcr.2023.109154
Broda, J., Gawłowski, A., Rom, M., Kukulski, T., & Kobiela-Mendrek, K. (2024). Thermoregulation and Soil Moisture Management in Strawberry Cultivation Mulched with Sheep Wool. Applied Sciences, 14(23), 10884. https://doi.org/10.3390/app142310884
Carstensen, L., Beil, S., Börnick, H., & Stolte, S. (2022). Structure-related endocrine-disrupting potential of environmental transformation products of benzophenone-type UV filters: A review. Journal of Hazardous Materials, 430, 128495. https://doi.org/10.1016/j.jhazmat.2022.128495
Chen, C., Huang, H., Abdalkarim, S. Y. H., Asad, R. A. M., & Yu, H.-Y. (2025). Establishing a predictive model for ultraviolet degradation to rapidly estimate the service life of poly (lactic acid)-based mulch film for agricultural protection. Journal of Cleaner Production, 508, 145587. https://doi.org/10.1016/j.jclepro.2025.145587
Chong, C. S., Ishak, I., Mahat, R. H., & Amin, Y. M. (1997). UV-VIS and FTIR spectral studies of CR-39 plastics irradiated with X-rays. Radiation Measurements, 28(1), 119-122. https://doi.org/10.1016/S1350-4487(97)00051-6
Chou, S.-H., Chuang, Y.-K., Lee, C.-M., Chang, Y.-S., Jhang, Y.-J., Yeh, C.-W., . . . Hsiao, I. L. (2022). Visualization and (Semi-)quantification of submicrometer plastics through scanning electron microscopy and time-of-flight secondary ion mass spectrometry. Environmental Pollution, 300, 118964. https://doi.org/10.1016/j.envpol.2022.118964
Cunsolo, S., Williams, J., Hale, M., Read, D. S., & Couceiro, F. (2021). Optimising sample preparation for FTIR-based microplastic analysis in wastewater and sludge samples: multiple digestions. Analytical and Bioanalytical Chemistry, 413(14), 3789-3799. https://doi.org/10.1007/s00216-021-03331-6
Doğan, M. (2021). Ultraviolet light accelerates the degradation of polyethylene plastics. Microscopy Research and Technique, 84(11), 2774-2783. https://doi.org/10.1002/jemt.23838
Dong, Y., Ren, L., Jia, X., Liao, X., Huang, L., Zhang, X., . . . Xu, L. (2025). Microplastics decrease soil compressibility but have no major impact on soil physical properties. Soil and Tillage Research, 253, 106688. https://doi.org/10.1016/j.still.2025.106688
Du, B., Lee, C., & Ji, Y. (2024). Study of Factors Affecting UV-Induced Photo-Degradation in Different Types of Polyethylene Sheets. Polymers, 16(19), 2709. https://doi.org/10.3390/polym16192709
Ebert, H.-P., & Vidi, S. (2024). Correct Use of the Guarded-Hot-Plate Method for Thermal Conductivity Measurements on Solids. International Journal of Thermophysics, 45(2), 20. https://doi.org/10.1007/s10765-023-03307-x
En-Nejmy, K., El Fels, L., El Hayany, B., & Hafidi, M. (2025). Microplastics behavior and distribution in mulched agricultural soil under semi-arid climate: A case study from Morocco. Pedosphere. https://doi.org/10.1016/j.pedsph.2025.05.003
Fajri, N., Cahya, E. P., Riandi, & Sriyati, S. (2024). Validasi Metode Analisis Konsentrasi Larutan Kopi berdasarkan Spektroskopi Absorpsi Cahaya. JIPFRI (Jurnal Inovasi Pendidikan Fisika dan Riset Ilmiah), 8(1), 51-59. https://doi.org/10.30599/jipfri.v8i1.2101
Fan, D., Jia, G., Wang, Y., & Yu, X. (2023). The effectiveness of mulching practices on water erosion control: A global meta-analysis. Geoderma, 438, 116643. https://doi.org/10.1016/j.geoderma.2023.116643
Fernández, C. (2023). Effects of post-fire application of straw mulch strips on soil erosion, soil moisture and vegetation regeneration in European dry heathlands in NW Spain. Ecological Engineering, 196, 107095. https://doi.org/10.1016/j.ecoleng.2023.107095
Gkoutselis, G., Rohrbach, S., Harjes, J., Obst, M., Brachmann, A., Horn, M. A., & Rambold, G. (2021). Microplastics accumulate fungal pathogens in terrestrial ecosystems. Scientific Reports, 11(1), 13214. https://doi.org/10.1038/s41598-021-92405-7
Guo, K., Cao, M., Gu, F., Wu, F., Yang, H., Xu, H., & Hu, Z. (2023). Mechanical Properties of Metallocene Linear Low-Density Polyethylene Mulch Films Correlate with Ultraviolet Irradiation and Film Thickness. Sustainability, 15(8), 6713. https://doi.org/10.3390/su15086713
Hou, L., Xi, J., Chen, X., Li, X., Ma, W., Lu, J., . . . Lin, Y. B. (2019). Biodegradability and ecological impacts of polyethylene-based mulching film at agricultural environment. Journal of Hazardous Materials, 378, 120774. https://doi.org/10.1016/j.jhazmat.2019.120774
Hudson, T. B., Alford, A. M., Bilbo, T. R., Boyle, S. C., Doughty, H. B., Kuhar, T. P., . . . Blubaugh, C. K. (2023). Living mulches reduce natural enemies when combined with frequent pesticide applications. Agriculture, Ecosystems & Environment, 357, 108680. https://doi.org/10.1016/j.agee.2023.108680
Jemec Kokalj, A., Dolar, A., Nagode, A., Drobne, D., Kuljanin, A., & Kalčíková, G. (2024). Response of terrestrial crustacean Porcellio scaber and mealworm Tenebrio molitor to non-degradable and biodegradable fossil-based mulching film microplastics. Science of The Total Environment, 951, 175379. https://doi.org/10.1016/j.scitotenv.2024.175379
Ju, T., Yang, K., Ji, D., Chang, L., Alquiza, M. d. J. P., & Li, Y. (2025). Microplastics influence nutrient content and quality of salt-affected agricultural soil under plastic mulch. Environmental Research, 264, 120376. https://doi.org/10.1016/j.envres.2024.120376
Junga, R., Wzorek, M., Sobek, S., Sajdak, M., & Yilmaz, E. (2024). Co-pyrolysis of animal manure and plastic waste study using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 181, 106598. https://doi.org/10.1016/j.jaap.2024.106598
Kim, D., Lee, S., & Yang, I. (2021). Verification of thermal conductivity measurements using guarded hot plate and heat flow meter methods. Journal of the Korean Physical Society, 78(12), 1196-1202. https://doi.org/10.1007/s40042-021-00177-0
Klempová, S., Oravec, M., & Vizárová, K. (2023). Analysis of thermally and UV–Vis aged plasticized PVC using UV–Vis, ATR-FTIR and Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 294, 122541. https://doi.org/10.1016/j.saa.2023.122541
Kumar, R., Sharma, S., Pathak, D., Dhiman, N., & Arora, N. (2017). Ionic conductivity, FTIR and thermal studies of nano-composite plasticized proton conducting polymer electrolytes. Solid State Ionics, 305, 57-62. https://doi.org/10.1016/j.ssi.2017.04.020
Maiket, Y., Yeetsorn, R., Surathin, N., Jirawutthiwongchai, J., & Boonyarattanakalin, S. (2025). The role of TPS in promoting the disintegration of LDPE/TPS blends to unravel the degradation mechanism of plastic films. Journal of Hazardous Materials, 488, 137400. https://doi.org/10.1016/j.jhazmat.2025.137400
Mansoor, Z., Tchuenbou-Magaia, F., Kowalczuk, M., Adamus, G., Manning, G., Parati, M., . . . Khan, H. (2022). Polymers Use as Mulch Films in Agriculture—A Review of History, Problems and Current Trends. Polymers, 14(23), 5062. https://doi.org/10.3390/polym14235062
Marczak-Grzesik, M., Tarach, K. A., Olszewska, A., Sobańska, K., Kowalczyk, A., & Góra-Marek, K. (2025). UV-vis methodology for evaluation of adsorption of polystyrene nanoplastics by zeolite adsorbents: A case of carboxylate-modified polystyrene. Journal of Environmental Chemical Engineering, 13(4), 117306. https://doi.org/10.1016/j.jece.2025.117306
Mecozzi, M., Pietroletti, M., & Monakhova, Y. B. (2016). FTIR spectroscopy supported by statistical techniques for the structural characterization of plastic debris in the marine environment: Application to monitoring studies. Marine Pollution Bulletin, 106(1), 155-161. https://doi.org/10.1016/j.marpolbul.2016.03.012
Merino, D., Gutiérrez, T. J., & Alvarez, V. A. (2019). Structural and Thermal Properties of Agricultural Mulch Films Based on Native and Oxidized Corn Starch Nanocomposites. Starch - Stärke, 71(7-8), 1800341. https://doi.org/10.1002/star.201800341
Merino, D., Zych, A., & Athanassiou, A. (2022). Biodegradable and Biobased Mulch Films: Highly Stretchable PLA Composites with Different Industrial Vegetable Waste. ACS Applied Materials & Interfaces, 14(41), 46920-46931. https://doi.org/10.1021/acsami.2c10965
Miao, H., Zhang, S., Gao, W., Zhou, J., Cai, H., Wu, L., . . . Liu, T. (2024). Microplastics occurrence and distribution characteristics in mulched agricultural soils of Guizhou province. Scientific Reports, 14(1), 21505. https://doi.org/10.1038/s41598-024-72829-7
Miao, J., Huang, W., Pan, R., & Zhou, K. (2023). Research progress and hotspot analysis of soil microplastics: a bibliometrics-based review [Review]. Frontiers in Environmental Science, Volume 11 - 2023. https://doi.org/10.3389/fenvs.2023.1297646
Mitu, F. A., Ashraful, M., Kader, M. A., Talukder, F. U., Akter, T., Akter, N., . . . Singha, A. (2025). Preserving soil properties and enhancing cauliflower yield with black plastic mulch in Bangladesh. Sains Tanah Journal of Soil Science and Agroclimatology, 21(2), 8. https://doi.org/10.20961/stjssa.v21i2.89262
Narloch, I., Gackowska, A., & Wejnerowska, G. (2022). Microplastic in the Baltic Sea: A review of distribution processes, sources, analysis methods and regulatory policies. Environmental Pollution, 315, 120453. https://doi.org/10.1016/j.envpol.2022.120453
Nguyen, M.-K., Rakib, M. R. J., Hwangbo, M., & Kim, J. (2025). Microplastic accumulation in soils: Unlocking the mechanism and biodegradation pathway. Journal of Hazardous Materials Advances, 17, 100629. https://doi.org/10.1016/j.hazadv.2025.100629
Noor-ul-Ain, Aslam, A., & Haider, F. U. (2022). Effects of Mulching on Soil Biota and Biological Indicators of Soil Quality. In K. Akhtar, M. Arif, M. Riaz, & H. Wang (Eds.), Mulching in Agroecosystems: Plants, Soil & Environment (pp. 15-40). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6410-7_2
Nugraha, F., Kurniawan, H., & Yastiara, I. (2023). Penetapan Kadar Paracetamol dalam Jamu di Kota Pontianak Menggunakan Instrumen Spektrofotometri UV-Vis. Indonesian Journal of Pharmaceutical Education, 3(1), 77-87. https://doi.org/10.37311/ijpe.v3i1.18876
Okubo, K., Manago, G., Tanabe, T., Yu, J., Liu, X., & Sasaki, T. (2025). Identifying plastic materials in post-consumer food containers and packaging waste using terahertz spectroscopy and machine learning. Waste Management, 196, 32-41. https://doi.org/10.1016/j.wasman.2025.02.018
Olesen, K. B., van Alst, N., Simon, M., Vianello, A., Liu, F., & Vollertsen, J. (2017). Analysis of Microplastics using FTIR Imaging [Journal article]. Agilent Application Note Environment. https://www.agilent.com/cs/library/applications/5991-8271EN_microplastics_ftir_application.pdf
Pahlawan, M. F. R., Kim, Y., Aline, U., Zahroh, A., Masithoh, R. E., Kim, M. S., . . . Cho, B.-K. (2025). Non-destructive identification of microplastics in soil using spectroscopy and hyperspectral imaging. TrAC Trends in Analytical Chemistry, 187, 118216. https://doi.org/10.1016/j.trac.2025.118216
Peksen, A., Ates, U., Ic, S., & Ozturk, B. (2023). Impact of Biodegradable Mulches on Qualitative Characteristics and Bioactive Compounds of Capia Pepper (Capsicum Annum L.) Under Cold Storage. Journal of Soil Science and Plant Nutrition, 23(3), 4412-4425. https://doi.org/10.1007/s42729-023-01359-4
Qiang, L., Hu, H., Li, G., Xu, J., Cheng, J., Wang, J., & Zhang, R. (2023). Plastic mulching, and occurrence, incorporation, degradation, and impacts of polyethylene microplastics in agroecosystems. Ecotoxicology and Environmental Safety, 263, 115274. https://doi.org/10.1016/j.ecoenv.2023.115274
Rahim, H. U., Akbar, W. A., Begum, N., Uddin, M., Qaswar, M., & Khan, N. (2022). Mulches and Microplastic Pollution in the Agroecosystem. In K. Akhtar, M. Arif, M. Riaz, & H. Wang (Eds.), Mulching in Agroecosystems: Plants, Soil & Environment (pp. 315-328). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-6410-7_18
Rodriguez, N., Xing, F., Gillor, O., Guvendiren, M., & Axe, L. (2025). Methodology development: evaluation of structural, thermal, and mechanical properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends for biodegradable mulch. Polymer Bulletin, 82(9), 3685-3713. https://doi.org/10.1007/s00289-025-05681-y
Romano, I., Ventorino, V., Schettino, M., Magaraci, G., & Pepe, O. (2024). Changes in Soil Microbial Communities Induced by Biodegradable and Polyethylene Mulch Residues Under Three Different Temperatures. Microbial Ecology, 87(1), 101. https://doi.org/10.1007/s00248-024-02420-0
Ryu, Y., Bouharras, F. E., Cha, M., Mudondo, J., Kim, Y., Ramakrishnan, S. R., . . . Kim, H. T. (2025). Recent advancements in the evolution, production, and degradation of biodegradable mulch films: A review. Environmental Research, 277, 121629. https://doi.org/10.1016/j.envres.2025.121629
Salama, K., & Geyer, M. (2023). Plastic Mulch Films in Agriculture: Their Use, Environmental Problems, Recycling and Alternatives. Environments, 10(10), 179. https://doi.org/10.3390/environments10100179
Samphire, M., Chadwick, D. R., & Jones, D. L. (2023). Biodegradable plastic mulch films increase yield and promote nitrogen use efficiency in organic horticulture. Frontiers in Agronomy, Volume 5 - 2023. https://doi.org/10.3389/fagro.2023.1141608
Sandt, C., Waeytens, J., Deniset-Besseau, A., Nielsen-Leroux, C., & Réjasse, A. (2021). Use and misuse of FTIR spectroscopy for studying the bio-oxidation of plastics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 258, 119841. https://doi.org/10.1016/j.saa.2021.119841
Sang, T., Wallis, C. J., Hill, G., & Britovsek, G. J. P. (2020). Polyethylene terephthalate degradation under natural and accelerated weathering conditions. European Polymer Journal, 136, 109873. https://doi.org/10.1016/j.eurpolymj.2020.109873
Senevirathne, G. I., Gimhani, T. D. M., Reay, M. K., Perera, C., Ariyaratna, M., Karunarathna, A. K., . . . Chathurika, J. A. S. (2025). In situ degradation of three contrasting plastic mulch films under maize cultivation in tropical conditions. Environmental Advances, 20, 100628. https://doi.org/10.1016/j.envadv.2025.100628
Sintim, H. Y., Bary, A. I., Hayes, D. G., Wadsworth, L. C., Anunciado, M. B., English, M. E., . . . Flury, M. (2020). In situ degradation of biodegradable plastic mulch films in compost and agricultural soils. Science of The Total Environment, 727, 138668. https://doi.org/10.1016/j.scitotenv.2020.138668
Somanathan, H., Sathasivam, R., Sivaram, S., Mariappan Kumaresan, S., Muthuraman, M. S., & Park, S. U. (2022). An update on polyethylene and biodegradable plastic mulch films and their impact on the environment. Chemosphere, 307, 135839. https://doi.org/10.1016/j.chemosphere.2022.135839
Song, J., Jia, H., Wang, Y., Zhang, X., Yang, W., Zhang, T., . . . Wang, H. (2025). Evaluation of the Effects of Degradable Mulching Film on the Growth, Yield and Economic Benefit of Garlic. Agronomy, 15(1), 93. https://doi.org/10.3390/agronomy15010093
Stachowiak, T., Postawa, P., Malińska, K., Dróżdż, D., & Pudełko, A. (2022). Comparison of Physical and Thermal Properties of Mulching Films Made of Different Polymeric Materials. Materials, 15(21), 7610. https://doi.org/10.3390/ma15217610
Villegas-Camacho, O., Alejo-Eleuterio, R., Francisco-Valencia, I., Granda-Gutiérrez, E., Martínez-Gallegos, S., & Illescas, J. (2024). FTIR-Plastics: A Fourier Transform Infrared Spectroscopy dataset for the six most prevalent industrial plastic polymers. Data in Brief, 55, 110612. https://doi.org/10.1016/j.dib.2024.110612
Wang, C., Zeng, T., Gu, C., Zhu, S., Zhang, Q., & Luo, X. (2019). Photodegradation Pathways of Typical Phthalic Acid Esters Under UV, UV/TiO2, and UV-Vis/Bi2WO6 Systems. Frontiers in Chemistry, Volume 7 - 2019. https://doi.org/10.3389/fchem.2019.00852
Wang, T., Liu, L., Zhao, Q., Meng, Z., & Li, W. (2023). The aging of polyethylene mulch films in the presence of cadmium. Ecotoxicology and Environmental Safety, 266, 115569. https://doi.org/10.1016/j.ecoenv.2023.115569
Wang, T., Ma, Y., & Ji, R. (2021). Aging Processes of Polyethylene Mulch Films and Preparation of Microplastics with Environmental Characteristics. Bulletin of Environmental Contamination and Toxicology, 107(4), 736-740. https://doi.org/10.1007/s00128-020-02975-x
Wang, X., Ni, L., Zhang, C., Xu, Q., & Ye, S. (2025). Using a one-dimensional convolutional neural network on FTIR spectroscopy to measure the thickness of composite plastic films. Infrared Physics & Technology, 147, 105777. https://doi.org/10.1016/j.infrared.2025.105777
Wang, Y., Bai, R.-H., Liu, Q., Tang, Q.-X., Xie, C.-H., Richel, A., . . . He, W.-Q. (2025). Degradation of biodegradable plastic films in soil: microplastics formation and soil microbial community dynamics. Journal of Hazardous Materials, 492, 138250. https://doi.org/10.1016/j.jhazmat.2025.138250
Wei, H., Zhang, K., Chai, N., Wang, Y., Li, Y., Yang, J., . . . Zhang, F. (2024). Exploring low-carbon mulching strategies for maize and wheat on-farm: Spatial responses, factors and mitigation potential. Science of The Total Environment, 906, 167441. https://doi.org/10.1016/j.scitotenv.2023.167441
Xie, Y., Abdalkarim, S. Y. H., Adil Mahjoob, H., Chen, C., Huang, H., & Yu, H.-Y. (2025). Unveiling the impact of soil depth on degradation of durable nanocomposite mulch-derived residue migration dynamics in plant ecosystems. Journal of Hazardous Materials, 493, 138364. https://doi.org/10.1016/j.jhazmat.2025.138364
Xie, Z., Xiong, Q., Fang, Y., Zhang, Q., Liang, W., Cheng, J., . . . Zhao, J. (2023). Novel Biodegradable Composite Mulch Film Embedded with Temperature-Responsive Pesticide Microcapsules for Durable Control of Phytophthora Root Rot on Soybean. ACS Sustainable Chemistry & Engineering, 11(26), 9868-9879. https://doi.org/10.1021/acssuschemeng.3c02824
Yang, C., & Gao, X. (2022). Impact of microplastics from polyethylene and biodegradable mulch films on rice (Oryza sativa L.). Science of The Total Environment, 828, 154579. https://doi.org/10.1016/j.scitotenv.2022.154579
Yang, C., Zhang, N., Zhao, F., & Wang, J. (2025). Mulching practices decreased soil microbial carbon degradation potential under spring maize in the Loess Plateau of China. Agriculture, Ecosystems & Environment, 381, 109465. https://doi.org/10.1016/j.agee.2024.109465
Yang, Z., Zhang, J., Haruka, N., Murat, C., & Arakawa, H. (2024). Spectral analysis of environmental microplastic polyethylene (PE) using average spectra. Science of The Total Environment, 927, 171871. https://doi.org/10.1016/j.scitotenv.2024.171871
Yu, H., Zhang, M., Liu, H., Xiao, J., Men, J., Cernava, T., . . . Jin, D. (2025). Comparison of plastisphere microbiomes during the degradation of conventional and biodegradable mulching films. Journal of Hazardous Materials, 487, 137243. https://doi.org/10.1016/j.jhazmat.2025.137243
Zhang, J., Du, L., Xing, Z., Zhang, R., Li, F., Zhong, T., . . . Liu, X. (2023). Effects of dual mulching with wheat straw and plastic film under three irrigation regimes on soil nutrients and growth of edible sunflower. Agricultural Water Management, 288, 108453. https://doi.org/10.1016/j.agwat.2023.108453
Zhang, J., Wang, K., Hao, T., Zhang, J., Müller, C., Florent, P., . . . Liu, X. (2025). Long-term plastic film mulching promotes microplastic accumulation and alters gross nitrogen transformation in soil. Applied Soil Ecology, 208, 106007. https://doi.org/10.1016/j.apsoil.2025.106007
Zhang, W., Ma, J., Cui, Z., Xu, L., Liu, Q., Li, J., . . . Zeng, X. (2023). Effects of Biodegradable Plastic Mulch Film on Cabbage Agronomic and Nutritional Quality Traits, Soil Physicochemical Properties and Microbial Communities. Agronomy, 13(5), 1220. https://doi.org/10.3390/agronomy13051220
Zhang, Y., Feng, R., Nie, W., Wang, F., & Feng, S. (2020). Plastic Film Mulch Performed Better in Improving Heat Conditions and Drip Irrigated Potato Growth in Northwest China than in Eastern China. Water, 12(10), 2906. https://doi.org/10.3390/w12102906
Zhang, Z., Fan, X., Zhang, R., Pan, X., Zhang, X., Ding, Y., & Liu, Y. (2025). Biodegradation characterization and mechanism of low-density polyethylene by the enriched mixed-culture from plastic-contaminated soil. Journal of Hazardous Materials, 494, 138530. https://doi.org/10.1016/j.jhazmat.2025.138530
Refbacks
- There are currently no refbacks.









.png)





