Nitrogen biotransformation: its ecological control and risk assessment in soil

Ferisman Tindaon, Gero Benckiser

Abstract

The Haber-Bosch (H-B) process, which enables the industrial production of ammonia from nitrogen and hydrogen, fundamentally changed food production. This process is crucial for synthesizing nitrogen-based fertilizers, which are essential for boosting crop yields and supporting the world's growing population. Monoculture farming, particularly when combined with high nitrogen input, poses significant environmental risks. It leads to soil degradation, increased vulnerability to pests and diseases, and water pollution. Reliance on synthetic fertilizers to offset nutrient depletion further worsens these problems. The question explores whether current analytical methods adequately identify and evaluate the side effects of urease (UI), nitrification (NI), and denitrification (DI) inhibitors used in nitrogen management strategies for high-yield monoculture farming. While inhibitors are designed to improve nitrogen use efficiency and reduce losses, their effectiveness must be weighed against their unintended consequences, necessitating the development of more comprehensive and holistic analytical approaches that better balance productivity and environmental protection. This research focuses on how different nitrogen fertilizer strategies, along with pesticide use, affect non-target organisms in ecosystems. It specifically examines the impacts of urea, nitrate manipulation, and stabilized nitrogen fertilizers like urease inhibitors (UI), nitrification inhibitors (NI), and dual inhibitors (DI) on ecological balance. The study also examines the broader environmental implications of these practices, including nitrogen loss and greenhouse gas emissions.  It highlights how these agrochemicals can affect wild plants, pollinators, and other non-target species, potentially disrupting ecosystem functions.

Keywords

Pesticides; Nitrification inhibitors; Side effects; NO Effect Level; Risk assessment methods

Full Text:

PDF

References

Abalos, D., Jeffery, S., Sanz-Cobena, A., Guardia, G., & Vallejo, A. (2014). Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agriculture, Ecosystems & Environment, 189, 136-144. https://doi.org/10.1016/j.agee.2014.03.036

Abbasi, M. K., Hina, M., & Tahir, M. M. (2011). Effect of Azadirachta indica (neem), sodium thiosulphate and calcium chloride on changes in nitrogen transformations and inhibition of nitrification in soil incubated under laboratory conditions. Chemosphere, 82(11), 1629-1635. https://doi.org/10.1016/j.chemosphere.2010.11.044

Adhikari, K. P., Bishop, P., & Saggar, S. (2021). Methods for extracting and analysing DMPP and Nitrapyrin in soil and plant samples from grazed pasture. Plant and Soil, 469(1), 149-160. https://doi.org/10.1007/s11104-021-05151-0

Adhikari, K. P., Saggar, S., Hanly, J. A., & Guinto, D. F. (2018). Laboratory evaluation of urease inhibitors 2-NPT and nBTPT in reducing ammonia emissions from cattle urine applied in dairy-grazed pasture soils. In L. D. Currie & C. L. Christensen (Eds.), Farm environmental planning – Science, policy and practice. Occasional Report No. 31. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand. https://flrc.massey.ac.nz/workshops/18/Manuscripts/Paper_Adhikari_2018.pdf

Ai, C., Liang, G., Sun, J., Wang, X., He, P., & Zhou, W. (2013). Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil. Soil Biology and Biochemistry, 57, 30-42. https://doi.org/10.1016/j.soilbio.2012.08.003

Albornoz, F. (2016). Crop responses to nitrogen overfertilization: A review. Scientia Horticulturae, 205, 79-83. https://doi.org/10.1016/j.scienta.2016.04.026

Ameloot, N., Sleutel, S., Case, S. D. C., Alberti, G., McNamara, N. P., Zavalloni, C., . . . De Neve, S. (2014). C mineralization and microbial activity in four biochar field experiments several years after incorporation. Soil Biology and Biochemistry, 78, 195-203. https://doi.org/10.1016/j.soilbio.2014.08.004

Andrén, O., Kätterer, T., Karlsson, T., & Eriksson, J. (2008). Soil C balances in Swedish agricultural soils 1990–2004, with preliminary projections. Nutrient Cycling in Agroecosystems, 81(2), 129-144. https://doi.org/10.1007/s10705-008-9177-z

Anshori, A., Sunarminto, B. H., Haryono, E., & Mujiyo, M. (2018). Potential Production of CH4 And N2O in Soil Profiles from Organic and Conventional Rice Fields. Sains Tanah Journal of Soil Science and Agroclimatology, 15(1), 7. https://doi.org/10.15608/stjssa.v15i1.19324

Arora, K., & Srivastava, A. (2013). Nitrogen losses due to nitrification: plant based remedial prospects. International Journal of Bioassays, 2(7), 984-991. https://www.ijbio.com/abstract/nitrogen-losses-due-to-nitrification-plant-based-remedial-prospects-13912.html

Austin, A. T., Sala, O. E., & Jackson, R. B. (2006). Inhibition of Nitrification Alters Carbon Turnover in the Patagonian Steppe. Ecosystems, 9(8), 1257-1265. https://doi.org/10.1007/s10021-005-0039-0

Bahram, M., Hildebrand, F., Forslund, S. K., Anderson, J. L., Soudzilovskaia, N. A., Bodegom, P. M., . . . Bork, P. (2018). Structure and function of the global topsoil microbiome. Nature, 560(7717), 233-237. https://doi.org/10.1038/s41586-018-0386-6

Bakker, M. G., Chaparro, J. M., Manter, D. K., & Vivanco, J. M. (2015). Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant and Soil, 392(1), 115-126. https://doi.org/10.1007/s11104-015-2446-0

Bardgett, R. D., & van der Putten, W. H. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515(7528), 505-511. https://doi.org/10.1038/nature13855

Bardon, C., Poly, F., Piola, F., Pancton, M., Comte, G., Meiffren, G., & Haichar, F. e. Z. (2016). Mechanism of biological denitrification inhibition: procyanidins induce an allosteric transition of the membrane-bound nitrate reductase through membrane alteration. FEMS Microbiology Ecology, 92(5). https://doi.org/10.1093/femsec/fiw034

Barrena, I., Menéndez, S., Correa-Galeote, D., Vega-Mas, I., Bedmar, E. J., González-Murua, C., & Estavillo, J. M. (2017). Soil water content modulates the effect of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on nitrifying and denitrifying bacteria. Geoderma, 303, 1-8. https://doi.org/10.1016/j.geoderma.2017.04.022

Bello, M. O., Thion, C., Gubry-Rangin, C., & Prosser, J. I. (2019). Differential sensitivity of ammonia oxidising archaea and bacteria to matric and osmotic potential. Soil Biology and Biochemistry, 129, 184-190. https://doi.org/10.1016/j.soilbio.2018.11.017

Benckiser, G. (2012). Hot topic: nanotechnology and patents in agriculture, food technology, nutrition and medicine-advantages and risks. Recent patents on food, nutrition & agriculture, 4(3), 171-175. https://doi.org/10.2174/2212798411204030171

Benckiser, G. (2017). Nanotechnology in Life Science: Its Application and Risk. In R. Prasad, M. Kumar, & V. Kumar (Eds.), Nanotechnology: An Agricultural Paradigm (pp. 19-31). Springer Singapore. https://doi.org/10.1007/978-981-10-4573-8_2

Benckiser, G., Christ, E., Herbert, T., Weiske, A., Blome, J., & Hardt, M. (2013). The nitrification inhibitor 3,4-dimethylpyrazole-phosphat (DMPP) - quantification and effects on soil metabolism. Plant and Soil, 371(1), 257-266. https://doi.org/10.1007/s11104-013-1664-6

Benckiser, G., Ladha, J. K., & Wiesler, F. (2016). Climate Change and Nitrogen Turnover in Soils and Aquatic Environments. In J. Marxsen (Ed.), Climate Change and Microbial Ecology: Current Research and Future Trends (pp. 113-136). Caister Academic Press, U.K. https://doi.org/10.21775/9781910190319.08

Benckiser, G., Schartel, T., & Weiske, A. (2015). Control of NO3− and N2O emissions in agroecosystems: A review. Agronomy for Sustainable Development, 35(3), 1059-1074. https://doi.org/10.1007/s13593-015-0296-z

Bhaduri, D., Sihi, D., Bhowmik, A., Verma, B. C., Munda, S., & Dari, B. (2022). A review on effective soil health bio-indicators for ecosystem restoration and sustainability [Review]. Frontiers in Microbiology, Volume 13 - 2022. https://doi.org/10.3389/fmicb.2022.938481

Bore, E. K., Apostel, C., Halicki, S., Kuzyakov, Y., & Dippold, M. A. (2017). Microbial Metabolism in Soil at Subzero Temperatures: Adaptation Mechanisms Revealed by Position-Specific 13C Labeling. Frontiers in Microbiology, Volume 8 - 2017. https://doi.org/10.3389/fmicb.2017.00946

Bremner, J. M., & Yeomans, J. C. (1986). Effects of nitrification inhibitors on denitrification of nitrate in soil. Biology and Fertility of Soils, 2(4), 173-179. https://doi.org/10.1007/BF00260840

Byrne, M. P., Tobin, J. T., Forrestal, P. J., Danaher, M., Nkwonta, C. G., Richards, K., . . . O’Callaghan, T. F. (2020). Urease and Nitrification Inhibitors—As Mitigation Tools for Greenhouse Gas Emissions in Sustainable Dairy Systems: A Review. Sustainability, 12(15), 6018. https://doi.org/10.3390/su12156018

Cai, Z., Gao, S., Hendratna, A., Duan, Y., Xu, M., & Hanson, B. D. (2016). Key Factors, Soil Nitrogen Processes, and Nitrite Accumulation Affecting Nitrous Oxide Emissions. Soil Science Society of America Journal, 80(6), 1560-1571. https://doi.org/10.2136/sssaj2016.03.0089

Chakrabarti, B., Bhatia, A., Sharma, S., Tomer, R., Sharma, A., Paul, A., . . . Sutton, M. A. (2024). Nitrification and urease inhibitors reduce gaseous N losses and improve nitrogen use efficiency in wheat exposed to elevated CO2 and temperature. Frontiers in Sustainable Food Systems, Volume 8 - 2024. https://doi.org/10.3389/fsufs.2024.1460994

Chen, H., Yu, F., & Shi, W. (2016). Detection of N2O-producing fungi in environment using nitrite reductase gene (nirK)-targeting primers. Fungal Biology, 120(12), 1479-1492. https://doi.org/10.1016/j.funbio.2016.07.012

Chen, J. G., Crooks, R. M., Seefeldt, L. C., Bren, K. L., Bullock, R. M., Darensbourg, M. Y., . . . Schrock, R. R. (2018). Beyond fossil fuel–driven nitrogen transformations. Science, 360(6391), eaar6611. https://doi.org/10.1126/science.aar6611

Chinnadurai, C., Gopalaswamy, G., & Balachandar, D. (2014). Impact of long-term organic and inorganic nutrient managements on the biological properties and eubacterial community diversity of the Indian semi-arid Alfisol. Archives of Agronomy and Soil Science, 60(4), 531-548. https://doi.org/10.1080/03650340.2013.803072

Coskun, D., Britto, D. T., Shi, W., & Kronzucker, H. J. (2017). Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants, 3(6), 17074. https://doi.org/10.1038/nplants.2017.74

Cruchaga, S., Artola, E., Lasa, B., Ariz, I., Irigoyen, I., Moran, J. F., & Aparicio-Tejo, P. M. (2011). Short term physiological implications of NBPT application on the N metabolism of Pisum sativum and Spinacea oleracea. Journal of Plant Physiology, 168(4), 329-336. https://doi.org/10.1016/j.jplph.2010.07.024

Das, S., & De, T. K. (2018). Microbial assay of N2 fixation rate, a simple alternate for acetylene reduction assay. MethodsX, 5, 909-914. https://doi.org/10.1016/j.mex.2017.11.010

DeLong, E. F. (2012). Microbial Evolution in the Wild. Science, 336(6080), 422-424. https://doi.org/10.1126/science.1221822

Di, H. J., & Cameron, K. C. (2011). Inhibition of ammonium oxidation by a liquid formulation of 3,4-Dimethylpyrazole phosphate (DMPP) compared with a dicyandiamide (DCD) solution in six new Zealand grazed grassland soils. Journal of Soils and Sediments, 11(6), 1032-1039. https://doi.org/10.1007/s11368-011-0372-1

Dimkpa, C. O. (2014). Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? Journal of Basic Microbiology, 54(9), 889-904. https://doi.org/10.1002/jobm.201400298

Domeignoz-Horta, L. A., Putz, M., Spor, A., Bru, D., Breuil, M. C., Hallin, S., & Philippot, L. (2016). Non-denitrifying nitrous oxide-reducing bacteria - An effective N2O sink in soil. Soil Biology and Biochemistry, 103, 376-379. https://doi.org/10.1016/j.soilbio.2016.09.010

Doran, G. S., Condon, J. R., & Kaveney, B. F. (2018). Rapid analysis of the nitrification inhibitor 3,4-dimethylpyrazole phosphate in soil using LC-MS/MS. International Journal of Environmental Analytical Chemistry, 98(7), 606-621. https://doi.org/10.1080/03067319.2018.1483023

Du, L., & Liu, W. (2012). Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agronomy for Sustainable Development, 32(2), 309-327. https://doi.org/10.1007/s13593-011-0062-9

Duan, Y.-F., Kong, X.-W., Schramm, A., Labouriau, R., Eriksen, J., & Petersen, S. O. (2017). Microbial N Transformations and N<sub>2</sub>O Emission after Simulated Grassland Cultivation: Effects of the Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate (DMPP). Applied and Environmental Microbiology, 83(1), e02019-02016. https://doi.org/10.1128/AEM.02019-16

Estendorfer, J., Stempfhuber, B., Haury, P., Vestergaard, G., Rillig, M. C., Joshi, J., . . . Schloter, M. (2017). The Influence of Land Use Intensity on the Plant-Associated Microbiome of Dactylis glomerata L. Frontiers in Plant Science, Volume 8 - 2017. https://doi.org/10.3389/fpls.2017.00930

Fisk, L. M., Maccarone, L. D., Barton, L., & Murphy, D. V. (2015). Nitrapyrin decreased nitrification of nitrogen released from soil organic matter but not amoA gene abundance at high soil temperature. Soil Biology and Biochemistry, 88, 214-223. https://doi.org/10.1016/j.soilbio.2015.05.029

Florio, A., Clark, I. M., Hirsch, P. R., Jhurreea, D., & Benedetti, A. (2014). Effects of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on abundance and activity of ammonia oxidizers in soil. Biology and Fertility of Soils, 50(5), 795-807. https://doi.org/10.1007/s00374-014-0897-8

Folina, A., Tataridas, A., Mavroeidis, A., Kousta, A., Katsenios, N., Efthimiadou, A., . . . Kakabouki, I. (2021). Evaluation of Various Nitrogen Indices in N-Fertilizers with Inhibitors in Field Crops: A Review. Agronomy, 11(3), 418. https://doi.org/10.3390/agronomy11030418

Gao, S.-j., Chang, D.-n., Zou, C.-q., Cao, W.-d., Gao, J.-s., Huang, J., . . . Thorup-Kristensen, K. (2018). Archaea are the predominant and responsive ammonia oxidizing prokaryotes in a red paddy soil receiving green manures. European Journal of Soil Biology, 88, 27-35. https://doi.org/10.1016/j.ejsobi.2018.05.008

Geisseler, D., Linquist, B. A., & Lazicki, P. A. (2017). Effect of fertilization on soil microorganisms in paddy rice systems – A meta-analysis. Soil Biology and Biochemistry, 115, 452-460. https://doi.org/10.1016/j.soilbio.2017.09.018

Ghaly, A., & Ramakrishnan, V. (2015). Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: A critical review. Journal of Pollution Effects & Control, 3(2), 1-26. https://www.longdom.org/open-access/nitrogen-sources-and-cycling-in-the-ecosystem-and-its-role-in-air-water-and-soil-pollution-a-critical-review-39830.html

Ghosh, P., Thakur, I. S., & Kaushik, A. (2017). Bioassays for toxicological risk assessment of landfill leachate: A review. Ecotoxicology and Environmental Safety, 141, 259-270. https://doi.org/10.1016/j.ecoenv.2017.03.023

Gong, P., Zhang, L.-L., Wu, Z.-J., Chen, Z.-H., & Chen, L.-J. (2013). Responses of Ammonia-Oxidizing Bacteria and Archaea in Two Agricultural Soils to Nitrification Inhibitors DCD and DMPP: A Pot Experiment. Pedosphere, 23(6), 729-739. https://doi.org/10.1016/S1002-0160(13)60065-X

Gottschalk, G. (2015). Welt der Bakterien, Archaeen und Viren: ein einführendes Lehrbuch der Mikrobiologie. John Wiley & Sons.

Grenni, P., Ancona, V., & Barra Caracciolo, A. (2018). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal, 136, 25-39. https://doi.org/10.1016/j.microc.2017.02.006

Guo, J., Cole, J. R., Zhang, Q., Brown, C. T., & Tiedje, J. M. (2016). Microbial Community Analysis with Ribosomal Gene Fragments from Shotgun Metagenomes. Applied and Environmental Microbiology, 82(1), 157-166. https://doi.org/10.1128/AEM.02772-15

Habibullah, H., Nelson, K. A., & Motavalli, P. P. (2018). Management of Nitrapyrin and Pronitridine Nitrification Inhibitors with Urea Ammonium Nitrate for Winter Wheat Production. Agronomy, 8(10), 204. https://doi.org/10.3390/agronomy8100204

Herbold, C. W., Lehtovirta-Morley, L. E., Jung, M.-Y., Jehmlich, N., Hausmann, B., Han, P., . . . Gubry-Rangin, C. (2017). Ammonia-oxidising archaea living at low pH: Insights from comparative genomics. Environmental Microbiology, 19(12), 4939-4952. https://doi.org/10.1111/1462-2920.13971

Hirayama, H., Abe, M., Miyazaki, J., Sakai, S., & Takai, K. (2015). Data report: cultivation of microorganisms from basaltic rock and sediment cores from the North Pond on the western flank of the Mid-Atlantic Ridge, IODP Expedition 336. In K. J. Edwards, W. Bach, A. Klaus, & The Expedition 336 Scientists (Eds.), Proceeding IODP, 336: Tokyo (Integrated Ocean Drilling Program Management International, Inc.) (Vol. 2, pp. 15). https://doi.org/10.2204/iodp.proc.336.204.2015

Huérfano, X., Fuertes-Mendizábal, T., Fernández-Diez, K., Estavillo, J. M., González-Murua, C., & Menéndez, S. (2016). The new nitrification inhibitor 3,4-dimethylpyrazole succinic (DMPSA) as an alternative to DMPP for reducing N2O emissions from wheat crops under humid Mediterranean conditions. European Journal of Agronomy, 80, 78-87. https://doi.org/10.1016/j.eja.2016.07.001

IPCC. (2014). Climate Change 2014 Synthesis Report. Intergovernmental Panel on Climate Change http://ar5-syr.ipcc.ch

Ishaq, S. L., AlZahal, O., Walker, N., & McBride, B. (2017). An Investigation into Rumen Fungal and Protozoal Diversity in Three Rumen Fractions, during High-Fiber or Grain-Induced Sub-Acute Ruminal Acidosis Conditions, with or without Active Dry Yeast Supplementation. Frontiers in Microbiology, Volume 8 - 2017. https://doi.org/10.3389/fmicb.2017.01943

Jiang, J., Chen, L., Sun, Q., Sang, M., & Huang, Y. (2015). Application of herbicides is likely to reduce greenhouse gas (N2O and CH4) emissions from rice–wheat cropping systems. Atmospheric Environment, 107, 62-69. https://doi.org/10.1016/j.atmosenv.2015.02.029

Joergensen, R. G., & Wichern, F. (2018). Alive and kicking: Why dormant soil microorganisms matter. Soil Biology and Biochemistry, 116, 419-430. https://doi.org/10.1016/j.soilbio.2017.10.022

Jung, D., Seo, E.-Y., Epstein, S. S., Joung, Y., Han, J., Parfenova, V. V., . . . Ahn, T. S. (2014). Application of a new cultivation technology, I-tip, for studying microbial diversity in freshwater sponges of Lake Baikal, Russia. FEMS Microbiology Ecology, 90(2), 417-423. https://doi.org/10.1111/1574-6941.12399

Kafarski, P., & Talma, M. (2018). Recent advances in design of new urease inhibitors: A review. Journal of Advanced Research, 13, 101-112. https://doi.org/10.1016/j.jare.2018.01.007

Kim, D.-G., Giltrap, D., Saggar, S., Palmada, T., Berben, P., & Drysdale, D. (2012). Fate of the nitrification inhibitor dicyandiamide (DCD) sprayed on a grazed pasture: effect of rate and time of application. Soil Research, 50(4), 337-347. https://doi.org/10.1071/SR12069

Kniggendorf, A.-K., Nogueira, R., Kelb, C., Schadzek, P., Meinhardt-Wollweber, M., Ngezahayo, A., & Roth, B. (2016). Confocal Raman microscopy and fluorescent in situ hybridization – A complementary approach for biofilm analysis. Chemosphere, 161, 112-118. https://doi.org/10.1016/j.chemosphere.2016.06.096

Kolovou, M., Panagiotou, D., Süße, L., Loiseleur, O., Williams, S., Karpouzas Dimitrios, G., & Papadopoulou Evangelia, S. (2023). Assessing the activity of different plant-derived molecules and potential biological nitrification inhibitors on a range of soil ammonia- and nitrite-oxidizing strains. Applied and Environmental Microbiology, 89(11), e01380-01323. https://doi.org/10.1128/aem.01380-23

Kong, X., Duan, Y., Schramm, A., Eriksen, J., & Petersen, S. O. (2016). 3,4-Dimethylpyrazole phosphate (DMPP) reduces activity of ammonia oxidizers without adverse effects on non-target soil microorganisms and functions. Applied Soil Ecology, 105, 67-75. https://doi.org/10.1016/j.apsoil.2016.03.018

Kumar, R., Parmar, B. S., Walia, S., & Saha, S. (2015). Nitrification Inhibitors: Classes and Its Use in Nitrification Management. In A. Rakshit, H. B. Singh, & A. Sen (Eds.), Nutrient Use Efficiency: from Basics to Advances (pp. 103-122). Springer India. https://doi.org/10.1007/978-81-322-2169-2_8

Kurniawati, F. D., Suntoro, S., Setyanto, P., & Cahyani, V. R. (2023). Effects of soil amendment from herbal and eucalyptus industrial waste on methane emission and rice yield. Sains Tanah Journal of Soil Science and Agroclimatology, 20(2), 11. https://doi.org/10.20961/stjssa.v20i2.69297

Lam, S. K., Suter, H., Bai, M., Walker, C., Davies, R., Mosier, A. R., & Chen, D. (2018). Using urease and nitrification inhibitors to decrease ammonia and nitrous oxide emissions and improve productivity in a subtropical pasture. Science of The Total Environment, 644, 1531-1535. https://doi.org/10.1016/j.scitotenv.2018.07.092

Legay, N., Lavorel, S., Baxendale, C., Krainer, U., Bahn, M., Binet, M.-N., . . . Bardgett, R. D. (2016). Influence of plant traits, soil microbial properties, and abiotic parameters on nitrogen turnover of grassland ecosystems. Ecosphere, 7(11), e01448. https://doi.org/10.1002/ecs2.1448

Lehtovirta-Morley, L. E., Verhamme, D. T., Nicol, G. W., & Prosser, J. I. (2013). Effect of nitrification inhibitors on the growth and activity of Nitrosotalea devanaterra in culture and soil. Soil Biology and Biochemistry, 62, 129-133. https://doi.org/10.1016/j.soilbio.2013.01.020

Leithold, G., Hülsbergen, K.-J., & Brock, C. (2015). Organic matter returns to soils must be higher under organic compared to conventional farming. Journal of Plant Nutrition and Soil Science, 178(1), 4-12. https://doi.org/10.1002/jpln.201400133

Li, L., Zhao, C., Wang, X., Tan, Y., Wang, X., Liu, X., & Guo, B. (2023). Effects of nitrification and urease inhibitors on ammonia-oxidizing microorganisms, denitrifying bacteria, and greenhouse gas emissions in greenhouse vegetable fields. Environmental Research, 237, 116781. https://doi.org/10.1016/j.envres.2023.116781

Li, Y., Chapman, S. J., Nicol, G. W., & Yao, H. (2018). Nitrification and nitrifiers in acidic soils. Soil Biology and Biochemistry, 116, 290-301. https://doi.org/10.1016/j.soilbio.2017.10.023

Lindblom, J., Lundström, C., Ljung, M., & Jonsson, A. (2017). Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precision Agriculture, 18(3), 309-331. https://doi.org/10.1007/s11119-016-9491-4

Lundström, C., & Lindblom, J. (2016). Considering farmers’ situated expertise in using AgriDSS to foster sustainable farming practices in precision agriculture. 13th International Conference on Precision Agriculture (ICPA), St Louis, USA, July.

Maeda, K., Spor, A., Edel-Hermann, V., Heraud, C., Breuil, M.-C., Bizouard, F., . . . Philippot, L. (2015). N2O production, a widespread trait in fungi. Scientific Reports, 5(1), 9697. https://doi.org/10.1038/srep09697

Majumdar, D. (2008). Unexploited botanical nitrification inhibitors prepared from Karanja plant. Natural Product Radiance, 7(1), 58-67. https://future-cannabis.s3.amazonaws.com/downloads/Clackamas_Coot_PDF_Library/Karanja_nitrification_inhibitors.pdf

Marco, D. (Ed.). (2014). Metagenomics of the Microbial Nitrogen Cycle: Theory, Methods and Applications. Caister Academic Press.

Margon, A., Parente, G., Piantanida, M., Cantone, P., & Leita, L. (2015). Novel investigation on ammonium thiosulphate (ATS) as an inhibitor of soil urease and nitrification. Agricultural Sciences, 6(12), 1502-1512. https://doi.org/10.4236/as.2015.612144

Marmann, A., Aly, A. H., Lin, W., Wang, B., & Proksch, P. (2014). Co-Cultivation—A Powerful Emerging Tool for Enhancing the Chemical Diversity of Microorganisms. Marine Drugs, 12(2), 1043-1065. https://doi.org/10.3390/md12021043

Marsden, K. A., Scowen, M., Hill, P. W., Jones, D. L., & Chadwick, D. R. (2015). Plant acquisition and metabolism of the synthetic nitrification inhibitor dicyandiamide and naturally-occurring guanidine from agricultural soils. Plant and Soil, 395(1), 201-214. https://doi.org/10.1007/s11104-015-2549-7

Martikainen, P. J. (2022). Heterotrophic nitrification – An eternal mystery in the nitrogen cycle. Soil Biology and Biochemistry, 168, 108611. https://doi.org/10.1016/j.soilbio.2022.108611

Martin, G., Guggiari, M., Bravo, D., Zopfi, J., Cailleau, G., Aragno, M., . . . Junier, P. (2012). Fungi, bacteria and soil pH: the oxalate–carbonate pathway as a model for metabolic interaction. Environmental Microbiology, 14(11), 2960-2970. https://doi.org/10.1111/j.1462-2920.2012.02862.x

Mazzei, L., Cianci, M., Contaldo, U., Musiani, F., & Ciurli, S. (2017). Urease Inhibition in the Presence of N-(n-Butyl)thiophosphoric Triamide, a Suicide Substrate: Structure and Kinetics. Biochemistry, 56(40), 5391-5404. https://doi.org/10.1021/acs.biochem.7b00750

McGeough, K. L., Laughlin, R. J., Watson, C. J., Müller, C., Ernfors, M., Cahalan, E., & Richards, K. G. (2012). The effect of cattle slurry in combination with nitrate and the nitrification inhibitor dicyandiamide on in situ nitrous oxide and dinitrogen emissions. Biogeosciences, 9(12), 4909-4919. https://doi.org/10.5194/bg-9-4909-2012

Nacry, P., Bouguyon, E., & Gojon, A. (2013). Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil, 370(1), 1-29. https://doi.org/10.1007/s11104-013-1645-9

Nai, C., & Meyer, V. (2018). From Axenic to Mixed Cultures: Technological Advances Accelerating a Paradigm Shift in Microbiology. Trends in Microbiology, 26(6), 538-554. https://doi.org/10.1016/j.tim.2017.11.004

Nguyen, Q. V., Wu, D., Kong, X., Bol, R., Petersen, S. O., Jensen, L. S., . . . Bruun, S. (2017). Effects of cattle slurry and nitrification inhibitor application on spatial soil O2 dynamics and N2O production pathways. Soil Biology and Biochemistry, 114, 200-209. https://doi.org/10.1016/j.soilbio.2017.07.012

Norton, J., & Ouyang, Y. (2019). Controls and Adaptive Management of Nitrification in Agricultural Soils [Review]. Frontiers in Microbiology, Volume 10 - 2019. https://doi.org/10.3389/fmicb.2019.01931

Nugrahaeningtyas, E., Lee, D.-J., Song, J.-I., Kim, J.-K., & Park, K.-H. (2022). Potential application of urease and nitrification inhibitors to mitigate emissions from the livestock sector: a review. Journal of Animal Science and Technology, 64(4), 603-620. https://doi.org/10.5187/jast.2022.e5

O’Callaghan, M., Gerard, E. M., Carter, P. E., Lardner, R., Sarathchandra, U., Burch, G., . . . Bell, N. (2010). Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine. Soil Biology and Biochemistry, 42(9), 1425-1436. https://doi.org/10.1016/j.soilbio.2010.05.003

Ouyang, Y., Norton, J. M., & Stark, J. M. (2017). Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil. Soil Biology and Biochemistry, 113, 161-172. https://doi.org/10.1016/j.soilbio.2017.06.010

Pal, P., McMillan, A. M. S., & Saggar, S. (2016). Pathways of dicyandiamide uptake in pasture plants: a laboratory study. Biology and Fertility of Soils, 52(4), 539-546. https://doi.org/10.1007/s00374-016-1096-6

Papadopoulou, E. S., Tsachidou, B., Sułowicz, S., Menkissoglu-Spiroudi, U., & Karpouzas, D. G. (2016). Land Spreading of Wastewaters from the Fruit-Packaging Industry and Potential Effects on Soil Microbes: Effects of the Antioxidant Ethoxyquin and Its Metabolites on Ammonia Oxidizers. Applied and Environmental Microbiology, 82(2), 747-755. https://doi.org/10.1128/AEM.03437-15

Papp, K., Hungate, B. A., & Schwartz, E. (2019). mRNA, rRNA and DNA quantitative stable isotope probing with H218O indicates use of old rRNA among soil Thaumarchaeota. Soil Biology and Biochemistry, 130, 159-166. https://doi.org/10.1016/j.soilbio.2018.12.016

Pfromm, P. H. (2017). Towards sustainable agriculture: Fossil-free ammonia. Journal of Renewable and Sustainable Energy, 9(3). https://doi.org/10.1063/1.4985090

Prakash, O., Shouche, Y., Jangid, K., & Kostka, J. E. (2013). Microbial cultivation and the role of microbial resource centers in the omics era. Applied Microbiology and Biotechnology, 97(1), 51-62. https://doi.org/10.1007/s00253-012-4533-y

Pronk, G. J., Heister, K., Vogel, C., Babin, D., Bachmann, J., Ding, G.-C., . . . Kögel-Knabner, I. (2017). Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments. Biology and Fertility of Soils, 53(1), 9-22. https://doi.org/10.1007/s00374-016-1161-1

Purwanto, P., Hartati, S., & Istiqomah, S. (2014). Effect of litter quality and dose on potential nitrification of soil and sweet corn yields. Sains Tanah Journal of Soil Science and Agroclimatology, 11(1), 11-20.

Qiao, C., Liu, L., Hu, S., Compton, J. E., Greaver, T. L., & Li, Q. (2015). How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global Change Biology, 21(3), 1249-1257. https://doi.org/10.1111/gcb.12802

Qin, S., Ding, K., Clough, T. J., Hu, C., & Luo, J. (2017). Temporal in situ dynamics of N2O reductase activity as affected by nitrogen fertilization and implications for the N2O/(N2O + N2) product ratio and N2O mitigation. Biology and Fertility of Soils, 53(7), 723-727. https://doi.org/10.1007/s00374-017-1232-y

Raul, R.-G., Irineo, T.-P., Gerardo, G.-G. R., & Miguel, C.-M. L. (2016). Biosensors Used for Quantification of Nitrates in Plants. Journal of Sensors, 2016(1), 1630695. https://doi.org/10.1155/2016/1630695

Regan, K., Stempfhuber, B., Schloter, M., Rasche, F., Prati, D., Philippot, L., . . . Marhan, S. (2017). Spatial and temporal dynamics of nitrogen fixing, nitrifying and denitrifying microbes in an unfertilized grassland soil. Soil Biology and Biochemistry, 109, 214-226. https://doi.org/10.1016/j.soilbio.2016.11.011

Robertson, G. P., & Groffman, P. M. (2007). 13 - NITROGEN TRANSFORMATIONS. In E. A. Paul (Ed.), Soil Microbiology, Ecology and Biochemistry (Third Edition) (pp. 341-364). Academic Press. https://doi.org/10.1016/B978-0-08-047514-1.50017-2

Rodrigues, J. M., Lasa, B., Aparicio-Tejo, P. M., González-Murua, C., & Marino, D. (2018). 3,4-Dimethylpyrazole phosphate and 2-(N-3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture nitrification inhibitors: Quantification in plant tissues and toxicity assays. Science of The Total Environment, 624, 1180-1186. https://doi.org/10.1016/j.scitotenv.2017.12.241

Romera, A. J., Cichota, R., Beukes, P. C., Gregorini, P., Snow, V. O., & Vogeler, I. (2017). Combining Restricted Grazing and Nitrification Inhibitors to Reduce Nitrogen Leaching on New Zealand Dairy Farms. Journal of Environmental Quality, 46(1), 72-79. https://doi.org/10.2134/jeq2016.08.0325

Scheurer, M., Brauch, H.-J., Schmidt, C. K., & Sacher, F. (2016). Occurrence and fate of nitrification and urease inhibitors in the aquatic environment [10.1039/C6EM00014B]. Environmental Science: Processes & Impacts, 18(8), 999-1010. https://doi.org/10.1039/C6EM00014B

Schulz, S., Kölbl, A., Ebli, M., Buegger, F., Schloter, M., & Fiedler, S. (2017). Field-Scale Pattern of Denitrifying Microorganisms and N2O Emission Rates Indicate a High Potential for Complete Denitrification in an Agriculturally Used Organic Soil. Microbial Ecology, 74(4), 765-770. https://doi.org/10.1007/s00248-017-0991-1

Schütte, G., Eckerstorfer, M., Rastelli, V., Reichenbecher, W., Restrepo-Vassalli, S., Ruohonen-Lehto, M., . . . Mertens, M. (2017). Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environmental Sciences Europe, 29(1), 5. https://doi.org/10.1186/s12302-016-0100-y

Shi, X., Hu, H.-W., Zhu-Barker, X., Hayden, H., Wang, J., Suter, H., . . . He, J.-Z. (2017). Nitrifier-induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4-dimethylpyrazole phosphate. Environmental Microbiology, 19(12), 4851-4865. https://doi.org/10.1111/1462-2920.13872

Šima, T., Krupička, J., & Nozdrovický, L. (2013). Effect of nitrification inhibitors on fertiliser particle size distribution of the DASA® 26/13 and ENSIN® fertilisers. Agronomy Research, 11(1), 111–116.

Singh, B.-. (2018). Are Nitrogen Fertilizers Deleterious to Soil Health? Agronomy, 8(4), 48. https://doi.org/10.3390/agronomy8040048

Singh, J., Kunhikrishnan, A., Bolan, N. S., & Saggar, S. (2013). Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Science of The Total Environment, 465, 56-63. https://doi.org/10.1016/j.scitotenv.2013.02.018

Soliveres, S., van der Plas, F., Manning, P., Prati, D., Gossner, M. M., Renner, S. C., . . . Allan, E. (2016). Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 536(7617), 456-459. https://doi.org/10.1038/nature19092

Sparacino-Watkins, C., Stolz, J. F., & Basu, P. (2014). Nitrate and periplasmic nitrate reductases [10.1039/C3CS60249D]. Chemical Society Reviews, 43(2), 676-706. https://doi.org/10.1039/C3CS60249D

Stempfhuber, B., Richter-Heitmann, T., Bienek, L., Schöning, I., Schrumpf, M., Friedrich, M., . . . Schloter, M. (2017). Soil pH and plant diversity drive co-occurrence patterns of ammonia and nitrite oxidizer in soils from forest ecosystems. Biology and Fertility of Soils, 53(6), 691-700. https://doi.org/10.1007/s00374-017-1215-z

Stempfhuber, B., Richter-Heitmann, T., Regan, K. M., Kölbl, A., Wüst, P. K., Marhan, S., . . . Schloter, M. (2016). Spatial Interaction of Archaeal Ammonia-Oxidizers and Nitrite-Oxidizing Bacteria in an Unfertilized Grassland Soil. Frontiers in Microbiology, Volume 6 - 2015. https://doi.org/10.3389/fmicb.2015.01567

Subbarao, G. V., Arango, J., Masahiro, K., Hooper, A. M., Yoshihashi, T., Ando, Y., . . . Iwanaga, M. (2017). Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology. Plant Science, 262, 165-168. https://doi.org/10.1016/j.plantsci.2017.05.004

Subbarao, G. V., Yoshihashi, T., Worthington, M., Nakahara, K., Ando, Y., Sahrawat, K. L., . . . Braun, H.-J. (2015). Suppression of soil nitrification by plants. Plant Science, 233, 155-164. https://doi.org/10.1016/j.plantsci.2015.01.012

Supriyadi, S., Widyatama, A., Prinandhika, G. M., Purwanto, P., & Hartati, S. (2021). Application of litters to inhibit nitrification in Vertisols on sweet corn (Zea mays S.). Sains Tanah Journal of Soil Science and Agroclimatology, 18(1), 10. https://doi.org/10.20961/stjssa.v18i1.43631

Thies, S., Rausch, S. C., Kovacic, F., Schmidt-Thaler, A., Wilhelm, S., Rosenau, F., . . . Jaeger, K.-E. (2016). Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Scientific Reports, 6(1), 27035. https://doi.org/10.1038/srep27035

Tindaon, F., & Benckiser, G. (2019). Evaluation of the Side Effects of Nitrification-Inhibiting Agrochemicals in Soils. In R. Z. Sayyed, M. S. Reddy, & S. Antonius (Eds.), Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture (pp. 93-107). Springer Singapore. https://doi.org/10.1007/978-981-13-6790-8_6

Tindaon, F., Benckiser, G., & Ottow, C. G. (2011). Side Effects of Nitrification Inhibitors on Non Target Microbial Processes in Soils. Journal of Tropical Soils, 16(1), 7–16. https://doi.org/10.5400/jts.2011.v16i1.7-16

Tindaon, F., Benckiser, G., & Ottow, J. C. G. (2012). Evaluation of ecological doses of the nitrification inhibitors 3,4-dimethylpyrazole phosphate (DMPP) and 4-chloromethylpyrazole (ClMP) in comparison to dicyandiamide (DCD) in their effects on dehydrogenase and dimethyl sulfoxide reductase activity in soils. Biology and Fertility of Soils, 48(6), 643-650. https://doi.org/10.1007/s00374-011-0655-0

Trapp, S., Brock, A. L., & Kästner, M. (2016). Simulation and prediction of biomass turnover and soil organic matter formation. In SOMmic–Microbial Contribution and Impact on Soil Organic Matter, Structure and Genesis (pp. 39). Helmholtz Centre for Environmental Research-UFZ. https://backend.orbit.dtu.dk/ws/portalfiles/portal/128309258/Proceedings_SOMmic_Workshop_2016_11.pdf

USEPA. (2016). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 – 2014. U.S. Environmental Protection Agency, U.S.A. https://www.epa.gov/sites/default/files/2016-04/documents/us-ghg-inventory-2016-main-text.pdf

Valenzuela-Hormazabal, P., Sepúlveda, R. V., Alegría-Arcos, M., Valdés-Muñoz, E., Rojas-Pérez, V., González-Bonet, I., . . . Bustos, D. (2024). Unveiling Novel Urease Inhibitors for Helicobacter pylori: A Multi-Methodological Approach from Virtual Screening and ADME to Molecular Dynamics Simulations. International Journal of Molecular Sciences, 25(4), 1968. https://doi.org/10.3390/ijms25041968

Venterea, R. T., Dolan, M. S., & Ochsner, T. E. (2010). Urea Decreases Nitrous Oxide Emissions Compared with Anhydrous Ammonia in a Minnesota Corn Cropping System. Soil Science Society of America Journal, 74(2), 407-418. https://doi.org/10.2136/sssaj2009.0078

Vestergaard, G., Schulz, S., Schöler, A., & Schloter, M. (2017). Making big data smart—how to use metagenomics to understand soil quality. Biology and Fertility of Soils, 53(5), 479-484. https://doi.org/10.1007/s00374-017-1191-3

Vogel, T. M., Simonet, P., Jansson, J. K., Hirsch, P. R., Tiedje, J. M., van Elsas, J. D., . . . Philippot, L. (2009). TerraGenome: a consortium for the sequencing of a soil metagenome. Nature Reviews Microbiology, 7(4), 252-252. https://doi.org/10.1038/nrmicro2119

Waldrip, H. M., Todd, R. W., Parker, D. B., Cole, N. A., Rotz, C. A., & Casey, K. D. (2016). Nitrous Oxide Emissions from Open-Lot Cattle Feedyards: A Review. Journal of Environmental Quality, 45(6), 1797-1811. https://doi.org/10.2134/jeq2016.04.0140

Wallace, A. J., Armstrong, R. D., Harris, R. H., Belyaeva, O. N., Grace, P. R., Partington, D. L., & Scheer, C. (2018). Fertiliser timing and use of inhibitors to reduce N2O emissions of rainfed wheat in a semi-arid environment. Nutrient Cycling in Agroecosystems, 112(2), 231-252. https://doi.org/10.1007/s10705-018-9941-7

Wang, X., Han, C., Zhang, J., Huang, Q., Deng, H., Deng, Y., & Zhong, W. (2015). Long-term fertilization effects on active ammonia oxidizers in an acidic upland soil in China. Soil Biology and Biochemistry, 84, 28-37. https://doi.org/10.1016/j.soilbio.2015.02.013

Ward, G. N., Kelly, K. B., & Hollier, J. W. (2018). Greenhouse gas emissions from dung, urine and dairy pond sludge applied to pasture. 1. Nitrous oxide emissions. Animal Production Science, 58(6), 1087-1093. https://doi.org/10.1071/AN15595

Waseem, H., Williams, M. R., Stedtfeld, T., Chai, B., Stedtfeld, R. D., Cole, J. R., . . . Hashsham, S. A. (2017). Virulence factor activity relationships (VFARs): a bioinformatics perspective [10.1039/C6EM00689B]. Environmental Science: Processes & Impacts, 19(3), 247-260. https://doi.org/10.1039/C6EM00689B

Woodward, E. E., Hladik, M. L., & Kolpin, D. W. (2016). Nitrapyrin in Streams: The First Study Documenting Off-Field Transport of a Nitrogen Stabilizer Compound. Environmental Science & Technology Letters, 3(11), 387-392. https://doi.org/10.1021/acs.estlett.6b00348

Wu, D., Senbayram, M., Well, R., Brüggemann, N., Pfeiffer, B., Loick, N., . . . Bol, R. (2017). Nitrification inhibitors mitigate N2O emissions more effectively under straw-induced conditions favoring denitrification. Soil Biology and Biochemistry, 104, 197-207. https://doi.org/10.1016/j.soilbio.2016.10.022

Xue, C., Zhang, X., Zhu, C., Zhao, J., Zhu, P., Peng, C., . . . Shen, Q. (2016). Quantitative and compositional responses of ammonia-oxidizing archaea and bacteria to long-term field fertilization. Scientific Reports, 6(1), 28981. https://doi.org/10.1038/srep28981

Yahya, M. S., Syafiq, M., Ashton-Butt, A., Ghazali, A., Asmah, S., & Azhar, B. (2017). Switching from monoculture to polyculture farming benefits birds in oil palm production landscapes: Evidence from mist netting data. Ecology and Evolution, 7(16), 6314-6325. https://doi.org/10.1002/ece3.3205

Yan, D., Wang, Q., Li, Y., Ouyang, C., Guo, M., & Cao, A. (2017). Analysis of the inhibitory effects of chloropicrin fumigation on nitrification in various soil types. Chemosphere, 175, 459-464. https://doi.org/10.1016/j.chemosphere.2017.02.075

Yang, M., Fang, Y., Sun, D., & Shi, Y. (2016). Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysis. Scientific Reports, 6(1), 22075. https://doi.org/10.1038/srep22075

Yeomans, J. C. (1986). Effects of urease inhibitors, nitrification inhibitors and pesticides on denitrification in soil [Doctoral Thesis, Iowa State University]. https://www.proquest.com/openview/cb709f7176c246fc3c9ee37caf176b97/1?cbl=18750&diss=y&pq-origsite=gscholar

Zanin, L., Venuti, S., Tomasi, N., Zamboni, A., De Brito Francisco, R. M., Varanini, Z., & Pinton, R. (2016). Short-Term Treatment with the Urease Inhibitor N-(n-Butyl) Thiophosphoric Triamide (NBPT) Alters Urea Assimilation and Modulates Transcriptional Profiles of Genes Involved in Primary and Secondary Metabolism in Maize Seedlings. Frontiers in Plant Science, Volume 7 - 2016. https://doi.org/10.3389/fpls.2016.00845

Zebarth, B. J., Snowdon, E., Burton, D. L., Goyer, C., & Dowbenko, R. (2012). Controlled release fertilizer product effects on potato crop response and nitrous oxide emissions under rain-fed production on a medium-textured soil. Canadian Journal of Soil Science, 92(5), 759-769. https://doi.org/10.4141/cjss2012-008

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6), 693-712. https://doi.org/10.1007/s11119-012-9274-5

Zhang, D., Wu, Y., Zhang, X., & Zhu, Y. (2017). Persistence of myclobutanil and its impact on biomass C and dehydrogenase enzyme activity in tea orchards soils . Eurasian Journal of Soil Science, 6(2), 106-113. https://doi.org/10.18393/ejss.286539

Zhu, X., Burger, M., Doane, T. A., & Horwath, W. R. (2013). Ammonia oxidation pathways and nitrifier denitrification are significant sources of N<sub>2</sub>O and NO under low oxygen availability. Proceedings of the National Academy of Sciences, 110(16), 6328-6333. https://doi.org/10.1073/pnas.1219993110

Refbacks

  • There are currently no refbacks.