Proses Produksi, Sumber Material Protein dan Karakteristik Produk Daging Analog: Review

Widyastuti Widyastuti, Muhammad Kusumawan Herliansyah, Herianto Herianto

Abstract

Daging analog merupakan produk dari protein nabati yang tekstur, warna, rasa, serta kandungan nutrisinya menyerupai daging hewan. Salah satu tantangan utama dalam memproduksi daging analog adalah membentuk produk agar menyerupai tekstur dan kualitas sensoris. Tujuan dari telaah pustaka ini adalah menjelaskan prinsip dasar proses produksi daging analog, mengidentifikasi material dan karakteristik produk pada tiap jenis proses. Proses pembentukan daging analog dapat menggunakan teknik extrusion, shearing, spinning ataupun 3D printing. Sumber utama protein nabati yang umum digunakan adalah soy protein isolate, pea protein isolate, dan wheat gluten. Bahan lain yang dapat digunakan sebagai alternatif dan additive dijelaskan lebih terperinci dalam review ini. Karakteristik daging analog yang dihasilkan berfokus pada stándar kualitas tekstur serat dan kualitas sensoris (mouthfeel, chewiness, cohesiveness, springiness, juiciness)

Keywords

daging analog, extrusión, shearing, spinning,3d printing

References

Cui, B., Liang, H., Li, J., Zhou, B., Chen, W., Liu, J., & Li, B. (2022a). Development and characterization of edible plant-based fibers using a wet-spinning technique. Food Hydrocolloids, 133. https://doi.org/10.1016/j.foodhyd.2022.107965

De Angelis, D., Opaluwa, C., Pasqualone, A., Karbstein, H. P., & Summo, C. (2023a). Rheological properties of dry-fractionated mung bean protein and structural, textural, and rheological evaluation of meat analogues produced by high-moisture extrusion cooking. Current Research in Food Science, 7. https://doi.org/10.1016/j.crfs.2023.100552

Dekkers, B. L., Boom, R. M., & van der Goot, A. J. (2018). Structuring processes for meat analogues. In Trends in Food Science and Technology (Vol. 81, pp. 25–36). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2018.08.011

Demircan, E., Aydar, E. F., Mertdinc (Mertdinç), Z., Kasapoglu (Kasapoğlu), K. N., & Ozcelik (Özçelik), B. (2023). 3D printable vegan plant-based meat analogue: Fortification with three different mushrooms, investigation of printability, and characterization. Food Research International, 173. https://doi.org/10.1016/j.foodres.2023.113259

Du, Q., Tu, M., Liu, J., Ding, Y., Zeng, X., & Pan, D. (2023). Plant-based meat analogs and fat substitutes, structuring technology and protein digestion: A review. Food Research International, 170. https://doi.org/10.1016/j.foodres.2023.112959

Gagaoua, M., Pinto, V. Z., Göksen, G., Alessandroni, L., Lamri, M., Dib, A. L., & Boukid, F. (2022). Electrospinning as a Promising Process to Preserve the Quality and Safety of Meat and Meat Products. In Coatings (Vol. 12, Issue 5). MDPI. https://doi.org/10.3390/coatings12050644

Ismail, I., Hwang, Y. H., & Joo, S. T. (2020). Meat analog as future food: A review. In Journal of Animal Science and Technology (Vol. 62, Issue 2, pp. 111–120). Korean Society of Animal Sciences and Technology. https://doi.org/10.5187/jast.2020.62.2.111

Ko, H. J., Wen, Y., Choi, J. H., Park, B. R., Kim, H. W., & Park, H. J. (2021). Meat analog production through artificial muscle fiber insertion using coaxial nozzle-assisted three-dimensional food printing. Food Hydrocolloids, 120. https://doi.org/10.1016/j.foodhyd.2021.106898

Köllmann, N., Schreuders, F. K. G., Zhang, L., & van der Goot, A. J. (2023). On the importance of cooling in structuring processes for meat analogues. Journal of Food Engineering, 350. https://doi.org/10.1016/j.jfoodeng.2023.111490

Mao, B., Singh, J., Hodgkinson, S., Farouk, M., & Kaur, L. (2024). Conformational changes and product quality of high-moisture extrudates produced from soy, rice, and pea proteins. Food Hydrocolloids, 147. https://doi.org/10.1016/j.foodhyd.2023.109341

Markets and markets. (2023, April). Plant-Based Protein Market Global Forecast to 2028. Https://Www.Marketsandmarkets.Com/Market-Reports/Plant-Based-Protein-Market-14715651.Html.

Mattice, K. D., & Marangoni, A. G. (2020). Comparing methods to produce fibrous material from zein. Food Research International, 128. https://doi.org/10.1016/j.foodres.2019.108804

Mazumder, Md. A. R., Panpipat, W., Chaijan, M., Shetty, K., & Rawdkuen, S. (2023). Role of plant protein on the quality and structure of meat analogs: A new perspective for vegetarian foods. Future Foods, 8, 100280. https://doi.org/10.1016/j.fufo.2023.100280

Meisenzahl Mary. (2020, September 3). A startup is 3D printing plant-based steaks to recreate the taste and texture of the real thing — see how they do it. https://www.businessinsider.com/redefine-meat-3d-printed-plant-based-faux-steaks-in-photos-2020-9

Nasrollahzadeh, F., Spotti, M. J., Skov, K., Mekonen, T., Chen, M., & Martinez, M. M. (2023a). Dispersion of low concentration of particulate or fibrillated protein fillers into plant protein melts and their impact on the elasticity and tenderness gap of plant-based foods. Food Hydrocolloids, 144. https://doi.org/10.1016/j.foodhyd.2023.108985

OECD FAO. (2021). OECD-FAO Agricultural Outlook 2021-2030 . https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2021-2030_19428846-en

Ozturk, O. K., & Hamaker, B. R. (2023). Texturization of plant protein-based meat alternatives: Processing, base proteins, and other constructional ingredients. Future Foods, 8. https://doi.org/10.1016/j.fufo.2023.100248

Pöri, P., Aisala, H., Liu, J., Lille, M., & Sozer, N. (2023). Structure, texture, and sensory properties of plant-meat hybrids produced by high-moisture extrusion. LWT, 173. https://doi.org/10.1016/j.lwt.2022.114345

Pöri, P., Lille, M., Edelmann, M., Aisala, H., Santangelo, D., Coda, R., & Sozer, N. (2023). Technological and sensory properties of plant-based meat analogues containing fermented sunflower protein concentrate. Future Foods, 8. https://doi.org/10.1016/j.fufo.2023.100244

Qiu, Y., McClements, D. J., Chen, J., Li, C., Liu, C., & Dai, T. (2023). Construction of 3D printed meat analogs from plant-based proteins: Improving the printing performance of soy protein- and gluten-based pastes facilitated by rice protein. Food Research International, 167. https://doi.org/10.1016/j.foodres.2023.112635

Ramachandraiah, K. (2021). Potential development of sustainable 3d-printed meat analogues: A review. In Sustainability (Switzerland) (Vol. 13, Issue 2, pp. 1–20). MDPI. https://doi.org/10.3390/su13020938

Ramos-Diaz, J. M., Oksanen, S., Kantanen, K., Edelmann, J. M., Suhonen, H., Sontag-Strohm, T., Piironen, V., & Jouppila, K. (2023b). Characterization of texturized meat analogues containing native lupin flour and lupin protein concentrate/isolate. Heliyon, 9(10). https://doi.org/10.1016/j.heliyon.2023.e20503

Rekola, S. M., Kårlund, A., Mikkonen, S., Kolehmainen, M., Pomponio, L., & Sozer, N. (2023a). Structure, texture and protein digestibility of high moisture extruded meat alternatives enriched with cereal brans. Applied Food Research, 3(1). https://doi.org/10.1016/j.afres.2023.100262

Sha, L., & Xiong, Y. L. (2020a). Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. In Trends in Food Science and Technology (Vol. 102, pp. 51–61). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2020.05.022

Snel, S. J. E., Amroussi, Y., van der Goot, A. J., & Beyrer, M. (2023a). Rework Potential of Soy and Pea Protein Isolates in High-Moisture Extrusion. Foods, 12(13). https://doi.org/10.3390/foods12132543

Snel, S. J. E., Otto, K., Schlangen, M., Beyrer, M., & van der Goot, A. J. (2024). Type of pectin determines structuring potential of soy proteins into meat analogue applications. Food Hydrocolloids, 146. https://doi.org/10.1016/j.foodhyd.2023.109262

Taghian Dinani, S., Allaire, N., Boom, R., & van der Goot, A. J. (2023). Influence of processing temperature on quality attributes of meat analogues fortified with L-cysteine. Food Hydrocolloids, 137. https://doi.org/10.1016/j.foodhyd.2022.108422

Taghian Dinani, S., Broekema, N. L., Boom, R., & van der Goot, A. J. (2023). Investigation potential of hydrocolloids in meat analogue preparation. Food Hydrocolloids, 135. https://doi.org/10.1016/j.foodhyd.2022.108199

Taghian Dinani, S., Charles Carrillo, M. F., Boom, R., & van der Goot, A. J. (2023). Quality improvement of plant-based meat alternatives by addition of iota carrageenan to pea protein–wheat gluten blend. European Food Research and Technology, 249(6), 1637–1654. https://doi.org/10.1007/s00217-023-04244-7

Taghian Dinani, S., de Jong, S., Vardhanabhuti, B., & van der Goot, A. J. (2023). Improving the quality of gluten-free plant-based meat analogs based on soy protein isolate with insoluble soy fibers and low acyl gellan gum. European Food Research and Technology. https://doi.org/10.1007/s00217-023-04391-x

Taghian Dinani, S., van der Harst, J. P., Boom, R., & van der Goot, A. J. (2023). Effect of L-cysteine and L-ascorbic acid addition on properties of meat analogues. Food Hydrocolloids, 134. https://doi.org/10.1016/j.foodhyd.2022.108059

Taghian Dinani, S., Zhang, Y., Vardhanabhuti, B., & Jan van der Goot, A. (2023). Enhancing textural properties in plant-based meat alternatives: The impact of hydrocolloids and salts on soy protein-based products. Current Research in Food Science, 7. https://doi.org/10.1016/j.crfs.2023.100571

Taikerd, T., & Leelawat, B. (2023). Effect of young jackfruit, wheat gluten and soy protein isolate on physicochemical properties of chicken meat analogs. Agriculture and Natural Resources, 57(2), 201–210. https://doi.org/10.34044/j.anres.2023.57.2.01

Tibrewal, K., Dandekar, P., & Jain, R. (2023). Extrusion-based sustainable 3D bioprinting of meat & its analogues: A review. In Bioprinting (Vol. 29). Elsevier B.V. https://doi.org/10.1016/j.bprint.2022.e00256

Waseem, M., Tahir, A. U., & Majeed, Y. (2023). Printing the future of food: The physics perspective on 3D food printing. Food Physics, 1, 100003. https://doi.org/10.1016/j.foodp.2023.100003

Wen, Y., Chao, C., Che, Q. T., Kim, H. W., & Park, H. J. (2023). Development of plant-based meat analogs using 3D printing: Status and opportunities. In Trends in Food Science and Technology (Vol. 132, pp. 76–92). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2022.12.010

Wen, Y., Kim, H. W., & Park, H. J. (2022a). Effect of xylose on rheological, printing, color, texture, and microstructure characteristics of 3D-printable colorant-containing meat analogs based on mung bean protein. Food Research International, 160. https://doi.org/10.1016/j.foodres.2022.111704

Wen, Y., Kim, H. W., & Park, H. J. (2022b). Effects of transglutaminase and cooking method on the physicochemical characteristics of 3D-printable meat analogs. Innovative Food Science and Emerging Technologies, 81. https://doi.org/10.1016/j.ifset.2022.103114

Zahari, I., Purhagen, J. K., Rayner, M., Ahlström, C., Helstad, A., Landers, M., Müller, J., Eriksson, J., & Östbring, K. (2023a). Extrusion of high-moisture meat analogues from hempseed protein concentrate and oat fibre residue. Journal of Food Engineering, 354. https://doi.org/10.1016/j.jfoodeng.2023.111567

Zahari, I., Rinaldi, S., Ahlstrom, C., Östbring, K., Rayner, M., & Purhagen, J. (2023). High moisture meat analogues from hemp – The effect of co-extrusion with wheat gluten and chickpea proteins on the textural properties and sensorial attributes. LWT, 189. https://doi.org/10.1016/j.lwt.2023.115494

Zhang, X., Zhao, Y., Zhang, T., Zhang, Y., Jiang, L., & Sui, X. (2023a). Potential of hydrolyzed wheat protein in soy-based meat analogues: Rheological, textural and functional properties. Food Chemistry: X, 20. https://doi.org/10.1016/j.fochx.2023.100921

Refbacks

  • There are currently no refbacks.