Analisis Performansi Metode Heuristik untuk Masalah Distribusi Rantai Pasokan Dua Tahap dengan Biaya Tetap
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Adlakha, V., Kowalski, K., Vemuganti, R. R., & Lev, B. (2007). More-for-less algorithm for fixed-charge transportation problems. Omega, 35(1), 116–127. https://doi.org/10.1016/j.omega.2006.03.001
Antony Arokia Durai Raj, K., & Rajendran, C. (2012). A genetic algorithm for solving the fixed-charge transportation model: Two-stage problem. Computers and Operations Research, 39(9), 2016–2032. https://doi.org/10.1016/j.cor.2011.09.020
Balaji, A. N., & Jawahar, N. (2010). A Simulated Annealing Algorithm for a two-stage fixed charge distribution problem of a Supply Chain. International Journal of Operational Research, 7(2), 192–215. https://doi.org/10.1504/IJOR.2010.030803
Calvete, H. I., Galé, C., Iranzo, J. A., & Toth, P. (2018). A matheuristic for the two-stage fixed-charge transportation problem. Computers and Operations Research, 95, 113–122. https://doi.org/10.1016/j.cor.2018.03.007
Cosma, O., Danciulescu, D., & Pop, P. C. (2019). On the Two-Stage Transportation Problem with Fixed Charge for Opening the Distribution Centers. IEEE Access, 7, 113684–113698. https://doi.org/10.1109/ACCESS.2019.2936095
Cosma, O., Pop, P. C., & Danciulescu, D. (2020). A Parallel Algorithm for Solving a Two-Stage Fixed-Charge Transportation Problem. Informatica (Netherlands), 31(4), 681–706. https://doi.org/10.15388/20-INFOR432
Cosma, O., Pop, P. C., & Sabo, C. (2020). An efficient hybrid genetic approach for solving the two-stage supply chain network design problem with fixed costs. Mathematics, 8(5). https://doi.org/10.3390/MATH8050712
Diaby, M. (1991). Successive linear approximation procedure for generalized fixed-charge transportation problems. Journal of the Operational Research Society, 42(11), 991–1001. https://doi.org/10.1057/jors.1991.189
Ekşioǧlu, S. D., & Jin, M. (2006). Cross-facility production and transportation planning problem with perishable inventory. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3982 LNCS(May 2006), 708–717. https://doi.org/10.1007/11751595_75
Hong, J., Diabat, A., Panicker, V. V., & Rajagopalan, S. (2018). A two-stage supply chain problem with fixed costs: An ant colony optimization approach. International Journal of Production Economics, 204, 214–226. https://doi.org/10.1016/j.ijpe.2018.07.019
Jawahar, N., & Balaji, A. N. (2009). A genetic algorithm for the two-stage supply chain distribution problem associated with a fixed charge. In European Journal of Operational Research (Vol. 194, Issue 2). Elsevier B.V. https://doi.org/10.1016/j.ejor.2007.12.005
Panicker, V. V., Vanga, R., & Sridharan, R. (2013). Ant colony optimisation algorithm for distribution-allocation problem in a two-stage supply chain with a fixed transportation charge. International Journal of Production Research, 51(3), 698–717. https://doi.org/10.1080/00207543.2012.658118
Schaffer, J. R., & O’Leary, D. E. (1989). Use of penalties in a branch and bound procedure for the fixed charge transportation problem. European Journal of Operational Research, 43(3), 305–312. https://doi.org/10.1016/0377-2217(89)90229-4
Srirangacharyulu, B., & Srinivas, K. (2017). A Heuristic Method for the two-stage Supply Chain Distribution Problem with Fixed Charge. International Journal of Mechanical And Production Engineering, 5(5), 100–104. http://iraj.in
Sun, M., Aronson, J. E., McKeown, P. G., & Drinka, D. (1998). A tabu search heuristic procedure for the fixed charge transportation problem. European Journal of Operational Research, 106(2–3), 441–456. https://doi.org/10.1016/S0377-2217(97)00284-1
Yang, L., & Liu, L. (2007). Fuzzy fixed charge solid transportation problem and algorithm. Applied Soft Computing Journal, 7(3), 879–889. https://doi.org/10.1016/j.asoc.2005.11.011
Refbacks
- There are currently no refbacks.