Analisis Performansi Metode Heuristik untuk Masalah Distribusi Rantai Pasokan Dua Tahap dengan Biaya Tetap

Santoso Santoso, Rainisa Maini Heryanto

Abstract

Distribusi produk di sepanjang rantai pasokan, yang secara langsung mempengaruhi biaya rantai pasokan adalah key driver dari profitabilitas perusahaan secara keseluruhan. Biaya distribusi bahkan menyumbang sekitar 30% dari biaya produk. Oleh karena itu, masalah distribusi merupakan pertimbangan penting untuk perusahaan industri yang memiliki jaringan rantai pasokan. Penelitian ini mempertimbangkan masalah distribusi dua tahap dari rantai pasokan yang dikaitkan dengan biaya tetap. Dua jenis biaya terlibat dalam masalah ini adalah biaya berkelanjutan yang meningkat secara linier sesuai dengan jumlah produk yang dikirim antara sumber dan tujuan serta biaya kedua adalah biaya tetap yang terjadi setiap kali jumlah yang tidak nol dikirimkan antara sumber dan tujuan. Tujuan yang ingin dicapai adalah meminimalisasi total biaya distribusi. Metode heuristik konstruktif sederhana yang didasari oleh metode aproksimasi Vogel akan dievaluasi untuk kualitas dari solusinya dengan membandingkannya dengan solusi yang dihasilkan dari metode genetika (GA) dan sebuah metode heuristik lain. Hasil perbandingan menunjukkan bahwa metode heuristik tersebut memiliki solusi yang baik dan dapat dipertimbangkan untuk digunakan dalam praktik. Metode heuristik tersebut dapat diselesaikan dengan perhitungan yang cukup sederhana dan membutuhkan waktu yang cukup singkat.

Keywords

biaya tetap, dua tahap, masalah distribusi, metode heuristik, rantai pasokan

References

Adlakha, V., Kowalski, K., Vemuganti, R. R., & Lev, B. (2007). More-for-less algorithm for fixed-charge transportation problems. Omega, 35(1), 116–127. https://doi.org/10.1016/j.omega.2006.03.001

Antony Arokia Durai Raj, K., & Rajendran, C. (2012). A genetic algorithm for solving the fixed-charge transportation model: Two-stage problem. Computers and Operations Research, 39(9), 2016–2032. https://doi.org/10.1016/j.cor.2011.09.020

Balaji, A. N., & Jawahar, N. (2010). A Simulated Annealing Algorithm for a two-stage fixed charge distribution problem of a Supply Chain. International Journal of Operational Research, 7(2), 192–215. https://doi.org/10.1504/IJOR.2010.030803

Calvete, H. I., Galé, C., Iranzo, J. A., & Toth, P. (2018). A matheuristic for the two-stage fixed-charge transportation problem. Computers and Operations Research, 95, 113–122. https://doi.org/10.1016/j.cor.2018.03.007

Cosma, O., Danciulescu, D., & Pop, P. C. (2019). On the Two-Stage Transportation Problem with Fixed Charge for Opening the Distribution Centers. IEEE Access, 7, 113684–113698. https://doi.org/10.1109/ACCESS.2019.2936095

Cosma, O., Pop, P. C., & Danciulescu, D. (2020). A Parallel Algorithm for Solving a Two-Stage Fixed-Charge Transportation Problem. Informatica (Netherlands), 31(4), 681–706. https://doi.org/10.15388/20-INFOR432

Cosma, O., Pop, P. C., & Sabo, C. (2020). An efficient hybrid genetic approach for solving the two-stage supply chain network design problem with fixed costs. Mathematics, 8(5). https://doi.org/10.3390/MATH8050712

Diaby, M. (1991). Successive linear approximation procedure for generalized fixed-charge transportation problems. Journal of the Operational Research Society, 42(11), 991–1001. https://doi.org/10.1057/jors.1991.189

Ekşioǧlu, S. D., & Jin, M. (2006). Cross-facility production and transportation planning problem with perishable inventory. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 3982 LNCS(May 2006), 708–717. https://doi.org/10.1007/11751595_75

Hong, J., Diabat, A., Panicker, V. V., & Rajagopalan, S. (2018). A two-stage supply chain problem with fixed costs: An ant colony optimization approach. International Journal of Production Economics, 204, 214–226. https://doi.org/10.1016/j.ijpe.2018.07.019

Jawahar, N., & Balaji, A. N. (2009). A genetic algorithm for the two-stage supply chain distribution problem associated with a fixed charge. In European Journal of Operational Research (Vol. 194, Issue 2). Elsevier B.V. https://doi.org/10.1016/j.ejor.2007.12.005

Panicker, V. V., Vanga, R., & Sridharan, R. (2013). Ant colony optimisation algorithm for distribution-allocation problem in a two-stage supply chain with a fixed transportation charge. International Journal of Production Research, 51(3), 698–717. https://doi.org/10.1080/00207543.2012.658118

Schaffer, J. R., & O’Leary, D. E. (1989). Use of penalties in a branch and bound procedure for the fixed charge transportation problem. European Journal of Operational Research, 43(3), 305–312. https://doi.org/10.1016/0377-2217(89)90229-4

Srirangacharyulu, B., & Srinivas, K. (2017). A Heuristic Method for the two-stage Supply Chain Distribution Problem with Fixed Charge. International Journal of Mechanical And Production Engineering, 5(5), 100–104. http://iraj.in

Sun, M., Aronson, J. E., McKeown, P. G., & Drinka, D. (1998). A tabu search heuristic procedure for the fixed charge transportation problem. European Journal of Operational Research, 106(2–3), 441–456. https://doi.org/10.1016/S0377-2217(97)00284-1

Yang, L., & Liu, L. (2007). Fuzzy fixed charge solid transportation problem and algorithm. Applied Soft Computing Journal, 7(3), 879–889. https://doi.org/10.1016/j.asoc.2005.11.011

Refbacks

  • There are currently no refbacks.