Effect of Boundary Condition on Numerical Study of UAV Composite Skin Panels Under Dynamic Impact Loading

Ilham Bagus Wiranto, Sherly Octavia Saraswati, Iqbal Reza Alfikri, Chairunnisa Chairunnisa, Fadli Cahya Megawanto, Muhammad Ilham Adhynugraha, Nur Cholis Majid

Abstract

In this study, a dynamic impact loading using Finite Element Analyses (FEA) was applied to an Unmanned Aerial Vehicle (UAV) composite skin panel. Two types of boundary condition panels were investigated (Fixed and Pinned). The composite UAV skin panel consists of upper panel and stiffener which have a thickness of 3 mm and 2 mm, respectively. The material properties used in this study was referring to Hexcel W3G282-F593 technical data sheet. A hemispherical steel indenter with 70 mm diameter and 120 kg of mass was used to crush the panel with a velocity of 4.43 m/s. The finite element analyses were performed using dynamic explicit solver in ABAQUS 6.23. At the beginning of study, the mesh convergence study was conducted to choose the proper mesh for main analysis. The convergence study was simulated using 20 kg mass to shorten computational time. The mesh size of 10 mm was chosen for the main analysis due to convergent result and short computational time compared to others mesh size. The impact deformation, contact force-displacement plot, and contact force-time plot was used to show the differences of using those boundary condition. The results show that fixed and pinned boundary condition reaches its contact force peak with the value of 29.2 kN and 22.8 kN, respectively.

Full Text:

PDF

References

1. National Research Council, Going to extremes: Meeting the emerging demand for durable polymer matrix composites, Washington D.C.: National Academies Press, 2005.

2. S. D. Salman, Z. Leman, M. T. H. Sultan, M. R. Ishak, and F. Cardona, “Effect of kenaf fibers on trauma penetration depth and ballistic impact resistance for laminated composites,” Text. Res. J., vol. 87, no. 17, pp. 2051-2065, 2017.

3. A. U. M. Shah, M. T. H. Sultan, F. Cardona, M. Jawaid, and N. Yidris, “Thermal analysis of bamboo fibre and its composites,” BioResources, vol. 12 no. 2, pp. 2394-2406, 2017.

4. N. H. Mostafa, Z. N. Ismarrubie, S. M. Sapuan, and M. T. H. Sultan, “Fibre prestressed composites: Theoretical and numerical modelling of unidirectional and plain-weave fibre reinforcement forms,” Compos. Struct., vol. 159, pp. 410-423, 2017.

5. A. Aribowo, M. I. Adhynugraha, F. C. Megawanto, A. Hidayat, T. Muttaqie, F. A. Wandono, A. Nurrohmad, Chairunnisa, S. O. Saraswati, I. B. Wiranto, I. R. Al Fikri, and M. D. Saputra, “Finite element method on topology optimization applied to laminate composite of fuselage structure,” Curved Layer. Struct., vol. 10, no. 1, article no. 20220191, 2023.

6. E. I. Basri, M. T. Sultan, M. Faizal, A. A. Basri, M. F. Abas, M. A. Majid, J. S. Mandeep, and K. A. Ahmad, “Performance analysis of composite ply orientation in aeronautical application of unmanned aerial vehicle (UAV) NACA4415 wing,” J. Mater. Res. Technol., vol. 8, no. 5, pp. 3822-3834, 2019.

7. A. Nagesh, Comparative Analysis of the Structural Properties of Materials Tested Under Fatigue Stresses Used in the Fuselage of an Airplane, and to Thereby Determine the Fuselage Materials Efficiency, Pennsylvania: Pennsylvania State University, 2017.

8. N. H. Mostafa, Z. N. Ismarrubie, S. M. Sapuan, and M. T. H. Sultan, “Effect of equi-biaxially fabric prestressing on the tensile performance of woven E-glass/polyester reinforced composites,” J. Reinf. Plast. Compos., vol. 35, no. 14, pp. 1093-1103, 2016.

9. S. D. Salman, M. J. Sharba, Z. Leman, M. T. Sultan, M. R. Ishak, and F. Cardona, “Tension-compression fatigue behavior of plain woven kenaf/kevlar hybrid composites,” BioResources, vol. 11, no. 2, pp. 3575-3586, 2016.

10. S. D. Salman, Z. Leman, M. T. H. Sultan, M. R. Ishak, and F. Cardona, “Influence of fiber content on mechanical and morphological properties of woven kenaf reinforced PVB film produced using a hot press technique,” Int. J. Polym. Sci., 2016.

11. W. D. Callister, Materials Science and Engineering: An Introduction, 7th ed. New Jersey: John Wiley & Sons, Inc., 2007.

12. A. Bautista, J. P. Casas-Rodriguez, M. Silva, and A. Porras, “A dynamic response analysis of adhesive-Bonded single lap joints used in military aircrafts made of glass fiber composite material undercyclic impact loading,” Int. J. Adhes., vol. 102, article no. 102644, 2020.

13. G. Georgiou, A. Manan, and J. E. Cooper, “Modeling composite wing aeroelastic behavior with uncertain damage severity and material properties,” Mech. Syst. Signal. Process., vol. 32, pp. 32-43, 2012.

14. L. Mehrez, A. Doostan, D. Moens, and D. Vandepitte, “Stochastic identification of composite material properties from limited experimental databases, Part II: Uncertainty modelling,” Mech. Syst. Signal. Process., vol. 27, pp. 484-498, 2012.

15. D. Jiang, Y. Li, Q. Fei, and S. Wu, “Prediction of uncertain elastic parameters of a braided composite,” Compos. Struct., vol. 126, pp. 123-131 2015.

16. F. Mehta, H. Joshi, “Finite element method: An overview,” IOSR J. Dent. Med. Sci., vol. 15, no. 3, pp. 38-41, 2016.

17. T. A. Sebaey, D. K. Rajak, and H. Mehboob, “Internally stiffened foam-filled carbon fiber reinforced composite tubes under impact loading for energy absorption applications,” Compos. Struct., vol. 255, article no. 112910, 2021.

18. Z. Huang, X. Zhang, and C. Yang, “Static and dynamic axial crushing of Al/CRFP hybrid tubes with single-cell and multi-cell sections,” Compos. Struct., vol. 226, article no. 111023, 2019.

19. Y. Qin, and K. S. Fancey, “Drop weight impact behaviour of viscoelastically prestressed composites,” Compos. Part A Appl. Sci. Manuf., vol. 131, article no. 105782, 2020.

20. L. Vigna, A. Calzolari, G. Galizia, G. Belingardi, and D. S. Paolino, “Effect of impact speed and friction on the in-plane crashworthiness of composite plates,” Procedia Struct. Integr., vol. 33, pp. 623-629, 2021.

21. Hexcel Corporation, HexPly F593 Product Datasheet, Stamford: Hexcel Corporation, 2020.

22. ABAQUS, Analysis User’s Manual, Version 6.23, California: ABAQUS Inc., 2023.

23. M. A. Abd El-baky, D. A. Hegazy, and M. A. Hassan, “Novel energy absorbent composites for crashworthiness applications,” J. Ind. Text., vol. 51, pp. 6403S-6442S, 2022.

24. P. W. Chen, and Y. Y. Lin, “Evaluation on crashworthiness and energy absorption of composite light airplane,” Adv. Mech. Eng., vol. 10, no. 8, article no. 1687814018794080, 2018.

Refbacks

  • There are currently no refbacks.