Effect of Boundary Condition on Numerical Study of UAV Composite Skin Panels Under Dynamic Impact Loading

Ilham Bagus Wiranto, Sherly Octavia Saraswati, Iqbal Reza Alfikri, Chairunnisa Chairunnisa, Fadli Cahya Megawanto, Muhammad Ilham Adhynugraha, Nur Cholis Majid

Abstract

In this study, a dynamic impact loading using finite element analyses (FEA) was applied to a UAV composite skin panel. Two types of boundary condition panels were investigated (Fixed and Pinned). The composite UAV skin panel consists of upper panel and stiffener which have a thickness of 3 mm and 2 mm, respectively. A hemispherical steel indenter with 70 mm diameter and 120 kg of mass was used to crush the panel with a velocity of 4,43 m/s. The finite element analyses were performed using dynamic explicit solver in ABAQUS 6.23. The impact deformation, contact force - displacement plot, and contact force – time plot was used to show the differences of using those boundary condition

Full Text:

PDF

References

1. National Research Council, Going to extremes: Meeting the emerging demand for durable polymer matrix composites. National Academies Press, 2005.

2. S. D. Salman, Z. Leman, M. T. H. Sultan, M. R. Ishak, and F. Cardona, “Effect of kenaf fibers on trauma penetration depth and ballistic impact resistance for laminated composites,” Text. Res. J., vol. 87, no. 17, pp. 2051-2065, 2017.

3. A. U. M. Shah, M. T. H. Sultan, F. Cardona, M. Jawaid, and N. Yidris, “Thermal analysis of bamboo fibre and its composites,” BioResources, vol. 12 no. 2, pp. 2394-2406, 2017.

4. N. H. Mostafa, Z. N. Ismarrubie, S. M. Sapuan, and M. T. H. Sultan, “Fibre prestressed composites: Theoretical and numerical modelling of unidirectional and plain-weave fibre reinforcement forms,” Compos. Struct., vol. 159, pp. 410-423, 2017.

5. A. Aribowo, M. I. Adhynugraha, F. C. Megawanto, A. Hidayat, T. Muttaqie, F. A. Wandono, A. Nurrohmad, Chairunnisa, S. O. Saraswati, I. B. Wiranto, I. R. Al Fikri, and M. D. Saputra, “Finite element method on topology optimization applied to laminate composite of fuselage structure,” Curved Layer. Struct., vol. 10 no. 1, p. 20220191, 2023.

6. E. I. Basri, M. T. Sultan, M. Faizal, A. A. Basri, M. F. Abas, M. A. Majid, J. S. Mandeep, and K. A. Ahmad, “Performance analysis of composite ply orientation in aeronautical application of unmanned aerial vehicle (UAV) NACA4415 wing,” J. Mater. Res. Technol., vol. 8, no. 5, pp. 3822-3834, 2019.

7. A. Nagesh, Comparative Analysis of the Structural Properties of Materials Tested Under Fatigue Stresses Used in the Fuselage of an Airplane, and to Thereby Determine the Fuselage Materials Efficiency. Doctoral dissertation, Pennsylvania State University.

8. N. H. Mostafa, Z. N. Ismarrubie, S. M. Sapuan, and M. T. H. Sultan, “Effect of equi-biaxially fabric prestressing on the tensile performance of woven E-glass/polyester reinforced composites,” J. Reinf. Plast. Compos., vol. 35, no. 14, pp. 1093-1103, 2016.

9. S. D. Salman, M. J. Sharba, Z. Leman, M. T. Sultan, M. R. Ishak, and F. Cardona, “Tension-compression fatigue behavior of plain woven kenaf/kevlar hybrid composites,” BioResources, vol. 11, no. 2, pp. 3575-3586, 2016.

10. S. D. Salman, Z. Leman, M. T. H. Sultan, M. R. Ishak, and F. Cardona, “Influence of fiber content on mechanical and morphological properties of woven kenaf reinforced PVB film produced using a hot press technique,” Int. J. Polym. Sci., 2016.

11. Jr. W.D.C. Composites. Mater. Sci. Eng. — an introd, 7th ed. United States of America: John Wiley & Sons, Inc., 2007. p. 577–617

12. A. Bautista, J. P. Casas-Rodriguez, M. Silva, and A. Porras, “A dynamic response analysis of adhesive-Bonded single lap joints used in military aircrafts made of glass fiber composite material undercyclic impact loading,” Int. J. Adhes., vol. 102, p. 102644, 2020.

13. G. Georgiou, A. Manan, and J. E. Cooper, “Modeling composite wing aeroelastic behavior with uncertain damage severity and material properties,” Mech. Syst. Signal. Process., vol. 32, pp. 32-43, 2012.

14. L. Mehrez, A. Doostan, D. Moens, and D. Vandepitte, “Stochastic identification of composite material properties from limited experimental databases, Part II: Uncertainty modelling,” Mech. Syst. Signal. Process., vol. 27, pp. 484-498, 2012.

15. D. Jiang, Y. Li, Q. Fei, and S. Wu, “Prediction of uncertain elastic parameters of a braided composite,” Compos. Struct., vol. 126, pp. 123-131 2015.

16. F. Mehta, H. Joshi, “Finite element method: An overview,” IOSR J. Dent. Med. Sci., vol. 15, no. 3, pp. 38-41, 2016.

17. T. A. Sebaey, D. K. Rajak, and H. Mehboob, “Internally stiffened foam-filled carbon fiber reinforced composite tubes under impact loading for energy absorption applications,” Compos. Struct., vol. 255, p. 112910, 2021.

18. Z. Huang, X. Zhang, and C. Yang, “Static and dynamic axial crushing of Al/CRFP hybrid tubes with single-cell and multi-cell sections,” Compos. Struct., vol. 226, p. 111023, 2019.

19. Y. Qin, and K. S. Fancey, “Drop weight impact behaviour of viscoelastically prestressed composites,” Compos. Part A Appl. Sci. Manuf., vol. 131, p. 105782, 2020.

20. L. Vigna, A. Calzolari, G. Galizia, G. Belingardi, and D. S. Paolino, “Effect of impact speed and friction on the in-plane crashworthiness of composite plates,” Procedia Struct. Integr., vol. 33, pp. 623-629, 2021.

21. Hexcel Corporation. HexPly Prepregs [internet]; 2023. www.hexcel.com.

22. ABAQUS, Analysis User’s Manual, Version 6.23, 2023. [Online]. Available: https://www.3ds.com/products-services/simulia/products/ABAQUS/

23. M. A. Abd El-baky, D. A. Hegazy, and M. A. Hassan, “Novel energy absorbent composites for crashworthiness applications,” J. Ind. Text., vol. 51, no. 4_suppl, 6403S-6442S, 2022.

24. P. W. Chen, and Y. Y. Lin, “Evaluation on crashworthiness and energy absorption of composite light airplane,” Adv. Mech. Eng., vol. 10, no. 8, p. 1687814018794080, 2018.

Refbacks

  • There are currently no refbacks.