Effect of Holding Time and Temperature of Hot Pressing on Tensile Strength of Biodegradable Plastic Made of Carrageenan

Fitrian Imaduddin, Palgunadi Sastra, Wijang Wisnu Raharjo, Putri Wullandari, Ridwan Ridwan

Abstract

Biodegradable plastic can be made from carrageenan by the hot press method. This method can make biodegradable plastic with large dimensions. However, the plastic quality depended on the holding time, temperature, and pressure selected during the hotpressing process. Therefore, this research is conducted to determine the effect of holding time and temperature in the hot press process on the tensile strength of biodegradable plastic made from carrageenan. The composition of the biodegradable plastic material used was 35% carrageenan, 35% polyvinyl alcohol, and 30% glycerol. The tensile strength of the composite was observed through tensile testing using a universal testing machine. fourier-transform infrared spectroscopy, X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) tests were also conducted to sharpen the analysis. The addition of holding time led to an increase in the tensile strength of biodegradable plastics. The highest tensile strength was obtained at a holding time of 30 minutes with a value of 4.45 MPa. After 30 minutes, the tensile strength of the biodegradable composite decreased. Meanwhile, the addition of process temperature caused a decrease in the tensile strength of biodegradable plastics. The highest tensile strength was obtained at a process temperature of 100 °C with a value of 5.28 MPa.

Full Text:

PDF

References

1. Y. Peng, P. Wu, A. T. Schartup, and Y. Zhang, “Plastic waste release caused by COVID-19 and its fate in the global ocean,” Proc. Natl. Acad. Sci., vol. 118, no. 47, article no. e2111530118, 2021.

2. P. Das and P. Tiwari, “Valorization of packaging plastic waste by slow pyrolysis,” Resources, Conservation and Recycling, vol. 128, pp. 69-77, 2018.

3. F. P. la Mantia and M. Morreale, “Green composites: A brief review,” Composites Part A: Applied Science and Manufacturing, vol. 42, no. 6, pp. 579-588, 2011.

4. M. Jang, H. Yang, S. A. Park, H. K. Sung, J. M. Koo, S. Y. Hwang, H. Jeon, D. X. Oh, and J. Park, Analysis of volatile organic compounds produced during incineration of non-degradable and biodegradable plastics,” Chemosphere, vol. 303, article no. 134946, 2022.

5. Y. Jin, F. Cai, C. Song, G. Liu, and C. Chen, “Degradation of biodegradable plastics by anaerobic digestion: Morphological, micro-structural changes and microbial community dynamics,” Sci. Total Environ., vol. 834, article no. 155167, 2022.

6. K. Ramesh, and P. V. Chellam, 16-Carrageenan-based bionanocomposites for food packaging applications-Bionanocomposites for Food Packaging Applications, Cambridge: Woodhead Publishing, 2022.

7. N. Nuryartono, S. Waldron, K. Tarman, U. J. Siregar, S. H. Pasaribu, A. Langford, M. Farid, and Sulfahri, An Analysis of the South Sulawesi Seaweed Industry, Brisbane: University of Queensland, 2021.

8. R. K. Singh and B. Ruj, “Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste,” Fuel, vol. 174, pp. 164-171, 2016.

9. T. L. Wu, Y. C. Chien, T. Y. Chen, and J. H. Wu, “The influence of hotpress temperature and cooling rate on thermal and physicomechanical properties of bamboo particle-polylactic acid composites,” Holzforschung, vol. 67, no. 3, pp. 325-331, 2013.

10. V. Gulitah and K. Chiang Liew, “Effect of Plastic Content Ratio on the Mechanical Properties of Wood-Plastic Composite (WPC) Made from Three Different Recycled Plastic and Acacia Fibres,” Trans. Sci. Tech., vol. 5, no. 2, pp. 184-189, 2018.

11. J. Necas and L. Bartosikova, “Carrageenan: A review,” Veterinární Medicína, vol. 58, no. 4, pp. 187-205, 2013.

12. L. Mao, S. Imam, S. Gordon, P. Cinelli, and E. Chiellini, “Extruded Cornstarch-Glycerol-Polyvinyl Alcohol Blends: Mechanical Properties, Morphology, and Biodegradability,” J. Polym. Envir., vol. 8, no. 4, pp. 205-211, 2000.

13. J. H. Lin, Z. I. Lin, Y. J. Pan, C. T. Hsieh, C. L. Huang, and C. W. Lou, “Thermoplastic polyvinyl alcohol/multiwalled carbon nanotube composites: Preparation, mechanical properties, thermal properties, and electromagnetic shielding effectiveness,” J. Appl. Polym. Sci., vol. 133, no. 21, article no. 43474, 2016.

14. B. B. Sedayu, M. J. Cran, and S. W. Bigger, “Effects of surface photocrosslinking on the properties of semi-refined carrageenan film,” Food Hydrocolloids, vol. 111, article no. 106196, 2021.

15. S. Akhmad and A. Arendra, “Development of Hot Press Molding for HDPE Recycling and Process Characterization,” Atlantis Highlights Eng., vol. 1, pp. 925-928, 2018.

16. Y. Srithep, P. Nealey, and L. S. Turng, “Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly (lactic acid),” Polym. Eng. Sci., vol. 53, no. 3, pp. 580-588, 2013.

17. G. Kiran, K. Suman, N. Rao, and R. Rao, “A study on the influence of hot press forming process parameters on mechanical properties of green composites using Taguchi experimental design,” Int. J. Eng., Sci. Tech., vol. 3, no. 4, pp. 253-263, 2011.

18. J. Huang, M. Wei, R. Ren, H. Li, S. Liu, and D. Yang, “Morphological changes of blocklets during the gelatinization process of tapioca starch,” Carbohydr. Polym., vol. 163, pp. 324-329, 2017.

19. R. Handayani and M. Yuniwati, “Pengaruh Suhu Dan Waktu Terhadap Kuat Tarik Pada Proses Pembuatan Plastik Dari Ganas (Gadung Dan Serat Daun Nanas),” J. Chem. Inf. Modeling, vol. 3, no. 1, pp. 16-21, 2018. (in Indonesian).

20. S. Haryati, A. S. Rini, and Y. Safitri, “Pemanfaatan biji durian sebagai bahan baku plastik biodegradable dengan plasticizer gliserol dan bahan pengisi CaCO3,” Jurnal Kimia, vol. 23, no. 1, pp. 1-8, 2017. (in Indonesia).

21. R. Ridwan, A. R. Prabowo, N. Muhayat, T. Putranto, and J. M. Sohn, “Tensile analysis and assessment of carbon and alloy steels using fe approach as an idealization of material fractures under collision and grounding,” Curved Layer. Struct., vol. 7, no. 1, pp. 188-198, 2020.

22. A. R. Prabowo, R. Ridwan, and T. Muttaqie, “On the Resistance to Buckling Loads of Idealized Hull Structures: FE Analysis on Designed-Stiffened Plates,” Designs, vol. 6, no. 3, article no. 46, 2022.

23. A. R. Prabowo, R. Ridwan, T. Tuswan, J. M. Sohn, E. Surojo, and F. Imaduddin, “Effect of the selected parameters in idealizing material failures under tensile loads: Benchmarks for damage analysis on thin–walled structures,” Curved Layer. Struct., vol. 9, no. 1, pp. 258-285, 2022.

24. A. R. Prabowo, T. Tuswan, D. M. Prabowoputra, and R. Ridwan, “Deformation of designed steel plates: An optimisation of the side hull structure using the finite element approach,” Open Eng., vol. 11, no. 1, pp. 1034-1047, 2021.

25. M. F. Dzulfiqar, A. R. Prabowo, R. Ridwan, and H. Nubli, “Assessment on the designed structural frame of the automatic thickness checking machine – Numerical validation in FE method,” Procedia Struct. Integr., vol. 33, no. C, pp. 59-66, 2021.

26. R. Ridwan, T. Putranto, F. B. Laksono, and A. R. Prabowo, “Fracture and Damage to the Material accounting for Transportation Crash and Accident,” Procedia Struct. Integr., vol. 27, no. 2020, pp. 38-45, 2020.

27. R. Ridwan, W. Nuriana, and A. R. Prabowo, “Energy absorption behaviors of designed metallic square tubes under axial loading: Experiment-based benchmarking and finite element calculation,” J. Mech. Behav. Mater., vol. 31, no. 1, pp. 443-461, 2022.

28. F. H. A. Alwan, A. R. Prabowo, T. Muttaqie, N. Muhayat, R. Ridwan, and F. B. Laksono, “Assessment of ballistic impact damage on aluminum and magnesium alloys against high velocity bullets by dynamic FE simulations,” J. Mech. Behav. Mater., vol. 31, no. 1, pp. 595-616, 2022.

29. A. R. Prabowo, T. Tuswan, and R. Ridwan, “Advanced development of sensors’ roles in maritime‐based industry and research: From field monitoring to high‐risk phenomenon measurement,” Appl. Sci., vol. 11, no. 9, article no. 3954, 2021.

Refbacks

  • There are currently no refbacks.