CFD Modeling of Narasena Bengawan UV Team Quickster UAV Wings with Addition of Vortex Generator to Aerodynamic Performance

Mohammad Fahmi Luthfi, Dominicus Danardono, Eko Prasetya Budiana, Yudi Kurniawan

Abstract

This research is based on obtaining the best possible aerodynamic performance for the Quickster Narasena Bengawan UV Team Unmanned Aerial Vehicle (UAV) aircraft wing design. One factor that significantly affects the flying version of a UAV is the wing. The Quickster Narasena UAV aircraft wing uses an MH33 airfoil because MH33 is specifically for high-speed UAV aircraft. This research will compare the performance of a branch without a vortex generator with addition with a vortex generator. This study will also discuss variations in the positioning of the vortex generator on the wing of the Quickster Narasena UAV. The method used in this research is the Computational Fluid Dynamics (CFD) method. The simulation process will use the ANSYS Fluent 19.0 application with the K-Omega Shear Stress Transform (SST) method with the Reynolds-Averaged-Navier-Stokes (RANS) equation as the basis. This study aims to obtain the results of the coefficient of drag, lift, and the contour of the turbulence that will occur. The simulation results that have been done are the geometry of the wing with the addition of a vortex generator can reduce the drag coefficient and can increase the lift coefficient.

Full Text:

PDF

References

  1. M. R. Sirojuddin, S. B. Wibowo, and G. Nugroho, “Perancangan dan Pengujian Terbang Pesawat Tanpa Awak Lokeswara,” vol. 5, no. 4, pp. 334-338, 2019. (in Indonesian).
  2. UNESA, 2019 KRTI Handbook, Surabaya: Universitas Negeri Surabaya, 2019. (in Indonesian).
  3. P. Panagiotou, P. Kaparos, C. Salpingidou, and K. Yakinthos, “Aerodynamic design of a MALE UAV,” Aerosp. Sci. Technol., vol. 50, pp. 127-138, 2016.
  4. L. Nugroho, “Pengaruh Bentuk Planform Sayap Terhadap Karakteristik Terbang Pesawat Tak Berawak Yang Diluncurkan Roket”, Widyariset, vol. 14, no. 3, pp. 633-642, 2011. (in Indonesian).
  5. A. Romadhon and D. Herdiana, “Analisis CFD Karakteristik Aerodinamika Pada Sayap Pesawat Lsu-05 Dengan Penambahan Vortex Generator,” Jurnal Teknologi Dirgantara, vol. 15, no. 1, article no. 45, 2017. (in Indonesian).
  6. U. Azmi and H. Sasongko, Studi Eksperimen Dan Numerik Pengaruh Penambahan Vortex Generator Pada Airfoil Nasa Ls-0417, Surabaya: Institut Teknologi Surabaya, 2017. (in Indonesian).
  7. G. Narayan and B. John, “Effect of winglets induced tip vortex structure on the performance of subsonic wings,” Aerosp. Sci. Technol., vol. 58, pp. 328-340, 2016.
  8. M. Kerho, S. Hutcherson, R. M. Liebeck, and R. F. Blackwelder, “Vortex generators used to control laminar separation bubbles,” 28th Aerosp. Sci. Meet. 1990, vol. 30, no. 3, pp. 315-319, 2016.
  9. B. Gardarin, L. Jacquin, and P. Geffroy, Flow separation control with vortex generators, in 4th AIAA Flow Control Conference, Washington, United States, 2008.
  10. B. N. M. Mcfadden and G. A. Rathert, The Effectiveness of Wing Vortex Generators in Improving the Maneuvering Characteristics of a Swept-Wing, Washington: National Advisory Committee for Aeronautics, 1955.
  11. M. B. Bragg and G. M. Gregorekt, “Experimental Study of Airfoil Performance with Vortex Generators,” Aero. Res. Cent., vol. 24, no. 5, pp. 305-309, 1987.
  12. A. R. Serakawi and K. A. Ahmad, “Experimental Study of Half-Delta Wing Vortex Generator for Flow Separation Control,” J. Airc., vol. 49, no. 1, pp. 76-81, 2012.
  13. J. M. Mcdonough, Lectures in Elementary Fluid Dynamics: Physics, Mathematics, and Applications, Lexington: University of Kentucky, 2009.
  14. W. Jin and Y. G. Lee, “Computational analysis of the aerodynamic performance of a long-endurance UAV,” Int. J. Aeronaut. Sp. Sci., vol. 15, no. 4, pp. 374-382, 2014.

Refbacks

  • There are currently no refbacks.