The Effect of Alkali Treatment And Microcrystalline Cellulose Addition on Density Value of Cantala Fiber Reinforced Unsaturated Polyester Composites
Abstract
Natural fiber reinforced composites is one material potentially developing in Indonesia. One of biggest problem with composites specimen is its void. One property to find out void of composites is composites density value. The objective of research is to investigate the effect of fiber alkali NaOH treatment and Microcrystalline Cellulose (MCC) addition on density value of cantala fiber reinforced unsaturated polyester composites. Firstly, cantala fibers was submerged into alkali NaOH 6% solution for 0, 3, 6, 9, and 12 hours. Furthermore, the fiber was washed using acetid acid and then using clean water to reach pH 7. Thereafter, cantala fiber was dried in the oven for 10 hours at temperature 60 ℃. Composites was composed of cantala fiber, unsaturated polyester polymer matrix, and microcrystalline cellulose according to the composition with volume fraction 30%. Composites was casted using compression molding method with compressive strength of 10 MPa for 12 hours. The result of research showed that the longer the alkali treatment time and the more addition of Microcrystalline Cellulose (MCC) filler, the higher is the composites density. The higher density value of cantala fiber reinforced unsaturated polyester is alkali treatment six hours, which was 1.223 gr/cm3.
Full Text:
PDFReferences
1. H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, “A Review On The Tensile Properties Of Natural Fiber Reinforced Polymer Composites,” Compos. Part B Eng., vol. 42, No. 4, pp. 856-873, 2011.
2. D. K. Rajak, D. D. Pagar, R. Kumar, and C. I. Pruncu, “Recent Progress Of Reinforcement Materials: A Comprehensive Overview Of Composite Materials,” J. Mater. Res. Tech., vol. 8, no. 6, pp. 6354-6374, 2019.
3. M. I. Reddy, U. R. P. Varma, I. A. Kumar, V. Manikanth, and P. V. K. Raju, “Comparative Evaluation On Mechanical Properties Of Jute, Pineapple Leaf Fiber And Glass Fiber Reinforced Composites With Polyester And Epoxy Resin Matrices,” Mater. Today Proc., vol. 5, no. 2, pp. 5649-5654, 2018.
4. B. Zuccarello and G. Marannano, “Random Short Sisal Fiber Biocomposites: Optimal Manufacturing Process And Reliable Theoretical Models,” Mater. Des., vol. 149, pp. 87-100, 2018.
5. V. N. Geethika and V. D. P. Rao, “Study Of Tensile Strength Of Agave Americana Fibre Reinforced Hybrid Composites,” Mater. Today Proc., vol. 4, no. 8, pp. 7760-7769, 2017.
6. L. Y. Mwaikambo and M. P. Ansell, “Chemical Modification Of Hemp, Sisal, Jute, And Kapok Fibers By Alkalization,” J. Appl. Polym. Sci., vol. 84, no. 12, pp. 2222-2234, 2002.
7. B. Santoso, “Peluang Pengembangan Agave Sebagai Sumber Serat Alam,” Perspektif, vol. 8, no. 2, pp. 84-95, 2015. (in Indonesian).
8. D. Ariawan and W. W. Raharjo, “Penentuan Kekuatan Optimum Agave Cantula Dengan Menggunakan Perlakuan Termal,” Mekanika, vol. 3, pp. 26-30, 2004. (in Indonesian).
9. S. Nadilah, I. Winursito, S. Wahyuni, S. Budiasih, and C. M. H. Purwanti, “Poliester Tak Jenuh Sebagai Bahan Baku Pembuatan Helm Pengaman,” Majalah Kulit, Karet, Dan Plastik, vol. 19, no. 1, pp. 25-31, 2003. (in Indonesian).
10. A. Gharbi, R. B. Hassen, and S. Boufi, “Composite Materials From Unsaturated Polyester Resin And Olive Nuts Residue: The Effect Of Silane Treatment,” Ind. Crops Prod., vol. 62, pp. 491-498, 2014.
11. G. Goud and R. N. Rao, “Effect Of Fibre Content And Alkali Treatment On Mechanical Properties Of Roystonea Regia–Reinforced Epoxy Partially Biodegradable Composites,” Bull. Mater. Sci., vol. 34, no. 7, pp. 1575-1581, 2011.
12. D. P. Ferreira, J. Cruz, and R. Fangueiro, Surface Modification Of Natural Fibers In Polymer Composites, Amsterdam: Elsevier, 2018.
13. D. Ariawan, T. S. Rivai, E. Surojo, and S. Hidayatulloh, “Effect Of Alkali Treatment Of Salacca Zalacca Fiber (SZF) On Mechanical Properties Of HDPE Composite Reinforced With SZF,” Alex. Eng. J., vol. 59, no. 5, pp. 3981-3989, 2020.
14. W. W. Raharjo, R. Soenoko, Y. S. Irawan, and A. Suprapto, “The Influence Of Chemical Treatments On Cantala Fiber Properties And Interfacial Bonding Of Cantala Fiber/Recycled High Density Polyethylene (rHDPE),” J. Nat. Fibers, vol. 15, no. 1, pp. 98-111, 2018.
15. S. Sakuri, D. Ariawan, and E. Surojo, “Thermogravimetry And Interfacial Characterization Of Alkaline Treated Cantala Fiber / Microcrystalline Cellulose–Composite,” Procedia Struct. Integr., vol. 27, pp. 85-92, 2020.
16. L. K. Kian, M. Jawaid, H. Ariffin, and O. Y. Alothman, “Isolation And Characterization Of Microcrystalline Cellulose From Roselle Fibers,” Int. J. Biol. Macromol., vol. 103, pp. 931-940, 2017.
17. A. Kiziltas, D. J. Gardner, Y. Han, and H. S. Yang, “Mechanical Properties Of Microcrystalline Cellulose (MCC) Filled Engineering Thermoplastic Composites,” J. Polym. Environ., vol. 22, no. 3, pp. 365-372, 2014.
18. R. Madan, S. Bhowmick, and K. N. Saha, “Stress And Deformation Of Functionally Graded Rotating Disk Based On Modified Rule Of Mixture,” Mater. Today Proc., vol. 5, no. 9, pp. 17778-17785, 2018.
19. M. W. Tham, M. R. N. Fazita, H. P. S. A. Khalil, N. Z. M. Zuhudi, M. Jaafar, S. Rizal, and M. K. M. Haafiz, “Tensile Properties Prediction Of Natural Fibre Composites Using Rule Of Mixtures: A Review,” J. Reinf. Plast. Compos., vol. 38, no. 5, pp. 211-248, 2019.
20. S. H. Aziz and M. P. Ansell, “The Effect Of Alkalization And Fibre Alignment On The Mechanical And Thermal Properties Of Kenaf And Hemp Bast Fibre Composites: Part 1 – Polyester Resin Matrix,” Compos. Sci. Tech., vol. 64, no. 9, pp. 1219-1230, 2004.
21. A. Kiziltas, D. J. Gardner, Y. Han, and H. S. Yang, “Determining The Mechanical Properties Of Microcrystalline Cellulose (MCC)–Filled PET–PTT Blend Composites,” Wood Fiber Sci., vol. 42, no. 2, pp. 165-176, 2010.
22. X. Wang, L. Chang, X. Shi, and L. Wang, “Effect Of Hot–Alkali Treatment On The Structure Composition Of Jute Fabrics And Mechanical Properties Of Laminated Composites,” Materials, vol. 12, no. 9, article no. 1386, 2019.
23. E. O. Cisneros-Lopez, J. Anzaldo, F. J. Fuentes-Talavera, J. R. Robledo-Ortız, R. Gonzalez-Nunez, and D. Rodrigue, “Effect Of Agave Fiber Surface Treatment On The Properties Of Polyethylene Composites Produced By Dry–Blending And Compression Molding,” Polym. Compos., vol. 38, no. 1, pp. 96-104, 2015.
24. A. Gopanna, K. P. Rajan, S. P. Thomas, and M. Chavali, Chapter 6-Polyethylene And Polypropylene Matrix Composites For Biomedical Applications. Amsterdam: Elsevier, 2019.
25. S. Sakuri, E. Surojo, D. Ariawan, and A. R. Prabowo, “Investigation Of Agave Cantala –Based Composite Fibers As Prosthetic Socket Materials Accounting For A Variety Of Alkali And Microcrystalline Cellulose Treatments,” Theor. Appl. Mech. Lett., vol. 10, no. 6, pp. 405-411, 2020.
26. A. Saidah, S. E. Susilowati, and Y. Nofendri, “Pengaruh Fraksi Volume Serat Terhadap Kekuatan Mekanik Komposit Serat Jerami Padi Epoxy Dan Serat Jerami Padi Resin Yukalac 157,” Jurnal Konversi Energi Dan Manufaktur UNJ, vol. 5, no. 2, pp. 96-101, 2018. (in Indonesian).
27. B. S. Sudirman, Aloma Karo , Ari H, “Analisis Sifat Kekuatan Tarik, Derajat Kristalinitas Dan Struktur Mikro Komposit Polimer Polipropilena–Pasir,” Jurnal Sains Material Indonesia, vol. 6, no. 1, pp. 1-6, 2004. (in Indonesian).
Refbacks
- There are currently no refbacks.