Theoretical study of the II-VI solar cells semiconductor material arrangements effect using the one-dimensional Schrodinger equation

Tamara Pingki, Dafik Dafik, Bambang Supriadi

Abstract

Solar cells are electronic devices that function to convert light energy from sun into electrical energy. Solar cells can work well if the materials used are also right so they can absorb light energy to the maximum. The solar cell materials used in this study are II-VI semiconductors, there are CdS (P), CdSe (Q), and CdTe (R). The purpose of this study was to find the combination of materials has the largest transmission coefficient which was analyzed using the Schrodinger equation (analytic) and Matlab R2022a (numeric). The greater the transmission coefficient, the greater the light energy absorbed by the solar cells, so that the generated electrical energy is also greater. The materials are arranged into 3 uniform arrangements and 6 combined arrangements with a maximum electron energy of 1 eV. The results showed that the largest transmission coefficient in the CdS array was 0.9925 at 1.0000 eV, the largest transmission coefficient in the CdSe array was 1.0000 at 0.8140 eV, and the largest transmission coefficient in the CdTe array was 1.0000 at 0.7330 eV. Meanwhile, in the combined arrangement, the biggest transmission value is 0.9823 at 0.9570 eV in the QPR and RPQ arrangements.

Keywords

Solar cells; Semiconductor; Transmission coefficient; Schrodinger equation

Full Text:

PDF

References

Abbaspour, S., Mahmoudian, B., & Islamian, J. P. (2022). Cadmium Telluride Semiconductor Detector for Improved Spatial and Energy Resolution Radioisotopic Imaging. World Journal of Nuclear Medicine, 16(2), 101-107. http://dx.doi.org/10.4103/1450-1147.203079

Abdy, M., Ihsan, H., & Dewi, D. A. R. (2021). Solusi Persamaan Schrodinger dengan menggunakan Metode Transformasi Diferensial. JMathCos (Journal of Mathematics, Computations, and Statistics), 4(1), 47-54. http://dx.doi.org/10.35580/jmathcos.v4i1.20449

Agustin, N. C., Nugroho, C. I. W., & Pratama, M. A. (2019). Koefisien Transmisi InN (Indium Nitrit) Penghalang Tunggal hingga Penghalang Tiga dengan Metode Schrodinger. Seminar Nasional Pendidikan Fisika, 4, 102-106.

Alawiyah, S., Azwar, A., & Noor, F. A. (2022). Studi Pengaruh Lapisan Pelindung pada Material Fotokatalis Cadmium Sulfida (CdS) terhadap Transmisi Elektron dan Hole berdasarkan Model Mekanika Kuantum Sederhana. Prisma Fisika, 10(3), 436 – 441.

Alshahrani, B., Nabil, S., Elsaeedy, H. I., Yakout, H. A., & Qasem, A. (2021). The Pivotal Role of Thermal Annealing of Cadmium Telluride Thin Film in Optimizing the Performance of CdTe/Si Solar Cells. Journal of Electronic Materials, 50(8), 4586-4598. https://doi.org/10.1007/s11664-021-08989-3

Arquer, F. P. G., Talapin, D. V., Klimov, V. I., Arakawa, Y., Bayer, M., & Sargent, E. H. (2021). Semiconductor Quantum Dots: Technological Progress and Future Challenges. Science, 373, 1-14. https://doi.org/10.1126/science.aaz8541

Baines, T., Zoppib, G., Bowenc, L., Shalveya, T. P., Mariottia, S., Durosea, K., & Major, J. D. (2018). Incorporation of CdSe Layers into CdTe Thin Film Solar Cells. Solar Energy Materials and Solar Cells, 180, 196-204. https://doi.org/10.1016/j.solmat.2018.03.010

Bosio, A., Pasini, S., & Romeo, N. (2020). The History of Photovoltaics with Emphasis on CdTe Solar Cells and Modules. Coatings, 10(4), 1-30. http://dx.doi.org/10.3390/coatings10040344

Devendra, K. C., Shah, D. K., Alanazi, A. M., & Akhtar, M. S. (2021) Impact of Different Antireflection Layers on Cadmium Telluride (CdTe) Solar Cells: A PC1D Simulation Study. Journal of Electronic Materials, 50(4), 2199-2205. https://doi.org/10.1007/s11664-020-08696-5

Huda, M. K., Prastowo, S. H. B., & Ridlo, Z. R. (2018). Analisis Efek Terobosan Empat Perintang pada Graphene. Seminar Nasional Pendidikan Fisika, 3(2), 153-158.

Iqbal, M., Ali, A., Nahyoon, N. A., Majeed, A., Pothu, R., Phulpoto, S., & Thebo, K. H. (2019). Photocatalytic Degradation of Organic Pollutant with Nanosized Cadmium Sulfide. Materials Science for Energy Technologies, 2(1), 41–45. https://doi.org/10.1016/j.mset.2018.09.002

Kagan, C. R., Lifshitz, E, Sargent, E. H., & Talapin, D. V. (2016). Building Devices from Colloidal Quantum Dots. Science, 353(6302), 1-9. https://doi.org/10.1126/science.aac5523

Kapadnis, R. S., Bansode, S. B., Supekar, A. T., Bhujbal, P. K., Kale, S. S., Jadkar, S. R., & Pathan, H. M. (2020). Cadmium Telluride/Cadmium Sulfide Thin Films Solar Cells: A Review. ES Energy & Environment, 10(1), 3-12. https://dx.doi.org/10.30919/esee8c706

Liu, M., Yazdani, N., Yarema, M., Jansen, M., Wood, V., & Sargent, E. H. (2021). Colloidal Quantum Dot Electronics. Nat Electron, 4(8), 548–558. https://doi.org/10.1038/s41928-021-00632-7

Lombu, O. Z., Simbolon, T. R., & Ginting, T. (2013). Aplikasi Metode Beda Hingga pada Persamaan Schrodinger menggunakan Matlab. Saintia Fisika, 3(1), 1-7.

Mazing, D. S., Brovko, A. M., Matyushkin, L. B., Aleksandrova, O. A., & Moshnikov, V. A. (2015). Preparation of Cadmium Selenide Colloidal Quantum Dots in Non-Coordinating Solvent Octadecene. Journal of Physics: Conference Series, 661, 1-4. https://doi:10.1088/1742-6596/661/1/012033

McHugh, K. J., Jing, L., Behrens, A. M., Jayawardena, S., Tang, W., Gao, M., Langer, R., & Jaklenec, A. (2018). Biocompatible Semiconductor Quantum Dots as Cancer Imaging Agents. Advanced Material, 30(18), 1-18. https://doi.org/10.1002/adma.201706356

Nasiroh, C., Supriadi, B., & Handayani, R. D. (2020). Tunnelling Effect for Quadruples Potential using Matrix Propagation Method. Indonesian Review of Physics (IRiP), 3(2), 66-73. https://10.12928/irip.v3i2.3066

Ong, R. (2022). Perhitungan Koefisien Transmisi pada Struktur Superlattice menggunakan Metode Propagasi Matriks. FISITEK: Jurnal Ilmu Fisika dan Teknologi, 6(1), 30-39.

Prastowo, S. H. B., Supriadi, B., Ridlo, Z. R., & Prihandono, T. (2018). Tunneling Effect on Double Potential Barriers GaAs and PbS. Journal of Physics: Conference Series, 1008, 1-7. https://doi.org/10.1088/1742-6596/1008/1/012012

Prastowo, S. H. B., Supriadi, B., Ridlo, Z. R., Huda, M. K., Bariroh, W., & Sholihah, U. (2019). Theoretical Analysis Quantum Tunneling Three Potential Barriers to The Schrodinger Equation in Graphene. Journal of Physics: Conference Series, 1211, 1-9. http://dx.doi.org/10.1088/1742-6596/1211/1/012055

Rahman, M. F., Hossain, J., Kuddus, A., Tabassum, S., Rubel, M. H. K., Shirai, H., & Ismail, A. B. M. (2020). A Novel Synthesis and Characterization of Transparent CdS Thin Films for CdTe/CdS Solar Cells. Applied Physics A, 126(2), 1-11. https://doi.org/10.1007/s00339-020-3331-0

Rani, S., Rajan, S. T., Shanthi, J., Ayeshamariam, A., & Jayachandran, M. (2015). Review on The Materials Properties and Photoelctrochemical (PEC) Solar Cells of CdSe, Cd1-xZnxSe, Cd1-xInxSe, Thin Films. Materials Science Forum, 832(1), 1-27. http://dx.doi.org/10.4028/www.scientific.net/MSF.832.1

Romeo, A. & Artegiani, E. (2021). CdTe-Based Thin Film Solar Cells: Past, Present and Future. Energies, 14(6), 1-24. http://dx.doi.org/10.3390/en14061684

Samoilenko, Y., Yeung, G., Munshi, A. H., Abbas, A., Reich, C. L., Walker, M., Reese, M. O., Zakutayev, A., Walls, J. M., Sampath, W. S., & Wolden, C. A. (2020). Stable Magnesium Zinc Oxide by Reactive Co-Sputtering for Cdte-Based Solar Cells. Solar Energy Materials and Solar Cells, 210, 1-8. https://doi.org/10.1016/j.solmat.2020.110521

Selopal, G. S., Zhao, H., Wang, Z. M., & Rosei, F. (2020). Core/Shell Quantum Dots Solar Cells. Adv. Funct. Mater, 30(13), 1-21. https://doi.org/10.1002/adfm.201908762

Shaikh, A. V., Sayyed, S. G., Naeem, S., Shaikh, S. F., & Mane, R. S. (2021). Electrodeposition of n-CdSe/p-Cu2Se Heterojunction Solar Cells. Engineered Science, 13, 79-86. https://dx.doi.org/10.30919/es8d1124

Sharma, S., Dutta, V., Raizada, P., Bandegharaei, A. H., Singh, P., & Nguyen, V. H. (2021). Tailoring Cadmium Sulfide‑Based Photocatalytic Nanomaterials for Water Decontamination: A Review. Environmental Chemistry Letters, 19(1), 271-306. https://doi.org/10.1007/s10311-020-01066-x

Suarso, E. (2013). Sintesis dan Karakterisasi Nanopartikel CdSe Quantum Dots (QDS). Jurnal Fisika FLUX, 10(2), 179–191.

Supriadi, B., Nasiroh, C., Pratikha, A. R., Kaulyn, M. A., Putri, D. K. S., & Anggraeni F. K. A. (2021). Transmittance on Combinatorial Structures of Triple Potential Barriers. Journal of Physics: Conference Series, 1832(1), 1-9.

Supriadi, B., Pingki, T., Mardhiana, H., Faridah, N., Istighfarini, E. T., & Subiki. (2023). Transmission Coefficient of Triple Potential Barrier Combination Structure using Two-Dimensional Schrodinger Equation. Series Title: Advances in Physics Research, 6, 146-155. https://doi.org/10.2991/978-94-6463-138-8_13

Supriadi, B., Prastowo, S. H. B., Amrullah, A. F., & Ridlo, Z. R. (2017). Solusi Efek Terobosan Penghalang Ganda dengan Persamaan Schrödinger Dua Dimensi. Seminar Nasional Fisika (SNF), 1, 42-48.

Supriadi, B., Ridlo, Z. R., Yushardi, Nugroho, C. I. W., Arsanti, J., & Septiana, S. (2019). Tunneling Effect on Triple Potential Barriers GaN, SiC and GaAs. Journal of Physics: Conference Series, 1211, 1-8. http://dx.doi.org/10.1088/1742-6596/1211/1/012034

Supriadi, B., Rizky, N., Yushardi, Agustin, N. C., Epiningtiyas, S., & Makmun, M. S. (2020). Analysis of The Relationship Between the Distance Barriers GaAs and GaAs with The Transmission Coefficient and The Reflection Coefficient. Journal of Physics: Conference Series, 1538, 1-8. https://10.1088/1742-6596/1538/1/012039

Refbacks

  • There are currently no refbacks.