Development of a Facial Recognition-based Attendance System using Binary Patterns Histograms Method and Telegram Bot Notification

Qois Amin Fauzan, Aris Budianto, Cucuk Wawan Budiyanto

Abstract

In carrying out attendance activities, most schools still use the manual attendance method, which utilizes the attendance book as a medium. However, the presence of the manual still causes some problems that arise when using this method. With the aim of this study, a "Facial Recognition-Based Attendance System" was created. This study used the Local Binary Pattern Histogram (LBPH) method to detect and recognize faces. The system is made to recognize the student's face and name, which the attendance system will then carry out along with the student's identity in the form of Name and Absence Number in real time to find out that the student is present in the class. The names that have been diabase can be saved through the XLS format. The result of this study is a facial recognition-based attendance system using the LBPH (Local Binary Pattern Histogram) method. The system is web-based, so users can easily access it through the internet. This research method uses research and development methods. This research stage consists of research and information collection, planning, and product draft development. The results of this study showed the feasibility level of facial recognition-based attendance systems. The eligibility rate obtained showed a score of 78.98%. From these results, this system is worthy of being used as an attendance system.

Full Text:

PDF

References

[1] Laksito W, Kusmiati TI. UNJUK KERJA METODE KLASIFIKASI SUPPORT VECTOR MACHINE (SVM) DENGAN LEARNING VECTOR QUANTIZATION (LVQ) PADA APLIKASI PENGENALAN WAJAH. Sist Pendukung Pengambilan Keputusan Penerimaan Beras Untuk Kel Miskin. 2012;9–18.

[2] Pranoto MB, Ramadhani KN. Face Detection System Menggunakan Metode Histogram of Oriented Gradients ( HOG ) dan Support Vector Machine ( SVM ) Face Dtection System using Histogram of Oriented Gradients ( HOG ) Method amd Support Vector Machine ( SVM ). e-Proceeding Eng. 2017;4(3):5038–45.

[3] Suprianto D. Sistem Pengenalan Wajah Secara Real-Time. Sist Pengenalan Wajah Secara Real-Time dengan Adab Eig PCA MySQL. 2013;7(2):179–84.

[4] Musthafa AR, Fitrawan AA, Supria S. Pengenalan Wajah Menggunakan Implementasi T-shape Mask pada Two Dimentional Linear Discriminant Analysis dan Support Vector Machine. J Buana Inform. 2016;7(1):1–10.

[5] Zheng WS, Lai JH, Li SZ. 1D-LDA vs. 2D-LDA: When is vector-based linear discriminant analysis better than matrix-based? Pattern Recognit. 2008;

[6] Athoillah M. Pengenalan Wajah Menggunakan SVM Multi Kernel dengan Pembelajaran yang Bertambah. J Online Inform. 2018;2(2):84.

[7] Hendri Z, Sujana AP. SISTEM PENGENALAN WAJAH MENGGUNAKAN METODE EIGENFACE BERBASIS RASPBERRY PI. 2018;49–57.

[8] Tarigan J. Biometric Security : Alternatif Pengendalian Dalam Sistem. 2004;90–105.

[9] Wiryadinata R, Sagita R, Wardoyo S, Priswanto P. Pengenalan Wajah Pada Sistem Presensi Menggunakan Metode Dynamic Times Wrapping, Principal Component Analysis dan Gabor Wavelet. Din Rekayasa. 2016;12(1):1.

[10] Akker J Van den, Gravemeijer K, McKenney S, Nieveen N. Introducing Educational Design Research. Educational Design Research. 2006:1–163.

[11] Gall MD, Borg WR, Gall JP. Educational research: An introduction, 6th ed. Educational research: An introduction, 6th ed. White Plains, NY, England: Longman Publishing; 1996. xxii, 788–xxii, 788.

Refbacks

  • There are currently no refbacks.