A Hybrid Model to Enhance The Performance of Classifier in Financial Distress Prediction

Mukti Ratna Dewi, Destri Susilaningrum

Abstract

Accurately predicting financial distress is a critical issue in financial decision-making. Financial distress must be detected as early as possible as an important determining factor in decision-making for internal companies and financial institutions related to financing or loan decisions. Various studies on financial distress prediction in Indonesia have been carried out, ranging from traditional statistical approaches to machine learning. However, the performance of the two methods is still not optimal. Therefore, this study tries to develop machine learning techniques by combining cluster analysis and classification in a hybrid model to improve the prediction model’s performance. The case study adopted in this study is the prediction of financial distress in non-financial companies listed on the IDX from 2018-2021 by combining k-means clustering and Support Vector Machine. The analysis results show that the hybrid classifier has an accuracy value of 92.7%, which is higher than the accuracy of the single classifier, which is 88.6%.

Keywords

Financial Distress, Hybrid Classifiers, Bankruptcy Prediction, K-means, SVM

Full Text:

PDF

References

[1] E. J. Balleisen, Navigating failure: bankruptcy and commercial society in antebellum America. Univ of North Carolina Press, 2001.

[2] D. R. Henderson, Concise Encyclopedia of Economics. Liberty Fund, 2008.

[3] D. Liang, C. C. Lu, C. F. Tsai, and G. A. Shih, “Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study,” Eur. J. Oper. Res., vol. 252, no. 2, pp. 561–572, Jul. 2016, doi: 10.1016/J.EJOR.2016.01.012.

[4] H. D. Piatt and M. B. Piatt, “Predicting corporate financial distress: Reflections on choice-based sample bias,” J. Econ. Financ. 2002 262, vol. 26, no. 2, pp. 184–199, 2002, doi: 10.1007/BF02755985.

[5] W. H. Beaver, M. Correia, and M. F. McNichols, “Financial Statement Analysis and the Prediction of Financial Distress,” Found. Trends® Account., vol. 5, no. 2, pp. 99–173, 2011, doi: 10.1561/1400000018.

[6] M. S. Jahur, S. M. N. Quadir, and others, “Financial distress in small and medium enterprises (SMES) of Bangladesh: Determinants and remedial measures,” Econ. Ser. Manag., vol. 15, no. 1, pp. 46–61, 2012.

[7] P. Jantadej, “Using the combinations of cash flow components to predict financial distress,” Jan. 2006. Accessed: Apr. 18, 2022. [Online]. Available: https://digitalcommons.unl.edu/dissertations/AAI3216429

[8] G. Kordestani, V. Biglari, and M. Bakhtiari, “Ability of combinations of cash flow components to predict financial distress,” Bus. Theory Pract., vol. 12, no. 3, pp. 277–285, Sep. 2011, doi: 10.3846/BTP.2011.28.

[9] M. Ezzamel, C. Mar‐Molinero, and A. Beech, “On the Distributional Properties of Financial Ratios,” J. Bus. Financ. Account., vol. 14, no. 4, pp. 463–481, Dec. 1987, doi: 10.1111/J.1468-5957.1987.TB00107.X.

[10] G. V. Karels and A. J. Prakash, “Multivariate Normality and Forecasting of Business Bankruptcy,” J. Bus. Financ. Account., vol. 14, no. 4, pp. 573–593, Dec. 1987, doi: 10.1111/J.1468-5957.1987.TB00113.X.

[11] V. Ravi, H. Kurniawan, P. N. K. Thai, and P. R. Kumar, “Soft computing system for bank performance prediction,” Appl. Soft Comput., vol. 8, no. 1, pp. 305–315, Jan. 2008, doi: 10.1016/J.ASOC.2007.02.001.

[12] L. Cleofas-Sánchez, V. García, A. I. Marqués, and J. S. Sánchez, “Financial distress prediction using the hybrid associative memory with translation,” Appl. Soft Comput., vol. 44, pp. 144–152, Jul. 2016, doi: 10.1016/J.ASOC.2016.04.005.

[13] K. Lee, D. Booth, and P. Alam, “A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms,” Expert Syst. Appl., vol. 29, no. 1, pp. 1–16, Jul. 2005, doi: 10.1016/J.ESWA.2005.01.004.

[14] T. Lensberg, A. Eilifsen, and T. E. McKee, “Bankruptcy theory development and classification via genetic programming,” Eur. J. Oper. Res., vol. 169, no. 2, pp. 677–697, Mar. 2006, doi: 10.1016/J.EJOR.2004.06.013.

[15] C. S. Ong, J. J. Huang, and G. H. Tzeng, “Building credit scoring models using genetic programming,” Expert Syst. Appl., vol. 29, no. 1, pp. 41–47, Jul. 2005, doi: 10.1016/J.ESWA.2005.01.003.

[16] A. Vellido, P. J. G. Lisboa, and J. Vaughan, “Neural networks in business: a survey of applications (1992–1998),” Expert Syst. Appl., vol. 17, no. 1, pp. 51–70, Jul. 1999, doi: 10.1016/S0957-4174(99)00016-0.

[17] B. K. Wong and Y. Selvi, “Neural network applications in finance: A review and analysis of literature (1990–1996),” Inf. Manag., vol. 34, no. 3, pp. 129–139, Oct. 1998, doi: 10.1016/S0378-7206(98)00050-0.

[18] M. R. Dewi, “Klasifikasi akses internet oleh anak-anak dan remaja dewasa di Jawa Timur menggunakan support vector machine,” J. Ris. dan Apl. Mat., vol. 4, no. 1, pp. 17–27, 2020.

[19] T. Oribel and D. Hanggraeni, “An Application of Machine Learning in Financial Distress Prediction Cases in Indonesia,” Int. J. Bus. Technol. Manag., vol. 3, no. 2, pp. 98–110, 2021.

[20] U. Z. Nisa, B. Santosa, and S. E. Wiratno, “Model Prediksi Finansial Distress Pada Perusahaan Manufaktur Go Public di Indonesia,” in Prosiding Seminar Nasional Manajemen Teknologi, 2013, vol. 18, pp. 1–8.

[21] N. Santoso and W. Wibowo, “Financial distress prediction using linear discriminant analysis and support vector machine,” in Journal of Physics: Conference Series, 2018, vol. 979, no. 1, p. 12089.

[22] S. Gupta, B. Parekh, and A. Jivani, “A Hybrid Model of Clustering and Classification to Enhance the Performance of a Classifier,” 2019, pp. 383–396. doi: 10.1007/978-981-15-0111-1_34.

[23] S. Cui, Y. Wang, Y. Yin, T. C. E. Cheng, D. Wang, and M. Zhai, “A cluster-based intelligence ensemble learning method for classification problems,” Inf. Sci. (Ny)., vol. 560, pp. 386–409, Jun. 2021, doi: 10.1016/J.INS.2021.01.061.

[24] H. Gan, N. Sang, R. Huang, X. Tong, and Z. Dan, “Using clustering analysis to improve semi-supervised classification,” Neurocomputing, vol. 101, pp. 290–298, Feb. 2013, doi: 10.1016/J.NEUCOM.2012.08.020.

[25] J. Xiao, Y. Tian, L. Xie, X. Jiang, and J. Huang, “A Hybrid Classification Framework Based on Clustering,” IEEE Trans. Ind. Informatics, vol. 16, no. 4, pp. 2177–2188, Apr. 2020, doi: 10.1109/TII.2019.2933675.

[26] N.-C. Hsieh, “Hybrid mining approach in the design of credit scoring models,” Expert Syst. Appl., vol. 28, no. 4, pp. 655–665, 2005.

[27] C. Cortes, V. Vapnik, and L. Saitta, “Support-vector networks,” Mach. Learn. 1995 203, vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.

[28] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering,” ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, Sep. 1999, doi: 10.1145/331499.331504.

[29] C. F. Tsai and M. L. Chen, “Credit rating by hybrid machine learning techniques,” Appl. Soft Comput., vol. 10, no. 2, pp. 374–380, Mar. 2010, doi: 10.1016/J.ASOC.2009.08.003.

[30] M. Bekkar, D. Kheliouane Djemaa, and D. Akrouf Alitouche, “Evaluation Measures for Models Assessment over Imbalanced Data Sets,” vol. 3, no. 10, 2013, Accessed: Oct. 21, 2022. [Online]. Available: www.iiste.org

[31] P. Kumar, R. Bhatnagar, K. Gaur, and A. Bhatnagar, “Classification of imbalanced data: review of methods and applications,” in IOP conference series: materials science and engineering, 2021, vol. 1099, no. 1, p. 12077.

Refbacks

  • There are currently no refbacks.