A Hybrid Model to Enhance The Performance of Classifier in Financial Distress Prediction
Abstract
Keywords
Full Text:
PDFReferences
[1] E. J. Balleisen, Navigating failure: bankruptcy and commercial society in antebellum America. Univ of North Carolina Press, 2001.
[2] D. R. Henderson, Concise Encyclopedia of Economics. Liberty Fund, 2008.
[3] D. Liang, C. C. Lu, C. F. Tsai, and G. A. Shih, “Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study,” Eur. J. Oper. Res., vol. 252, no. 2, pp. 561–572, Jul. 2016, doi: 10.1016/J.EJOR.2016.01.012.
[4] H. D. Piatt and M. B. Piatt, “Predicting corporate financial distress: Reflections on choice-based sample bias,” J. Econ. Financ. 2002 262, vol. 26, no. 2, pp. 184–199, 2002, doi: 10.1007/BF02755985.
[5] W. H. Beaver, M. Correia, and M. F. McNichols, “Financial Statement Analysis and the Prediction of Financial Distress,” Found. Trends® Account., vol. 5, no. 2, pp. 99–173, 2011, doi: 10.1561/1400000018.
[6] M. S. Jahur, S. M. N. Quadir, and others, “Financial distress in small and medium enterprises (SMES) of Bangladesh: Determinants and remedial measures,” Econ. Ser. Manag., vol. 15, no. 1, pp. 46–61, 2012.
[7] P. Jantadej, “Using the combinations of cash flow components to predict financial distress,” Jan. 2006. Accessed: Apr. 18, 2022. [Online]. Available: https://digitalcommons.unl.edu/dissertations/AAI3216429
[8] G. Kordestani, V. Biglari, and M. Bakhtiari, “Ability of combinations of cash flow components to predict financial distress,” Bus. Theory Pract., vol. 12, no. 3, pp. 277–285, Sep. 2011, doi: 10.3846/BTP.2011.28.
[9] M. Ezzamel, C. Mar‐Molinero, and A. Beech, “On the Distributional Properties of Financial Ratios,” J. Bus. Financ. Account., vol. 14, no. 4, pp. 463–481, Dec. 1987, doi: 10.1111/J.1468-5957.1987.TB00107.X.
[10] G. V. Karels and A. J. Prakash, “Multivariate Normality and Forecasting of Business Bankruptcy,” J. Bus. Financ. Account., vol. 14, no. 4, pp. 573–593, Dec. 1987, doi: 10.1111/J.1468-5957.1987.TB00113.X.
[11] V. Ravi, H. Kurniawan, P. N. K. Thai, and P. R. Kumar, “Soft computing system for bank performance prediction,” Appl. Soft Comput., vol. 8, no. 1, pp. 305–315, Jan. 2008, doi: 10.1016/J.ASOC.2007.02.001.
[12] L. Cleofas-Sánchez, V. García, A. I. Marqués, and J. S. Sánchez, “Financial distress prediction using the hybrid associative memory with translation,” Appl. Soft Comput., vol. 44, pp. 144–152, Jul. 2016, doi: 10.1016/J.ASOC.2016.04.005.
[13] K. Lee, D. Booth, and P. Alam, “A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms,” Expert Syst. Appl., vol. 29, no. 1, pp. 1–16, Jul. 2005, doi: 10.1016/J.ESWA.2005.01.004.
[14] T. Lensberg, A. Eilifsen, and T. E. McKee, “Bankruptcy theory development and classification via genetic programming,” Eur. J. Oper. Res., vol. 169, no. 2, pp. 677–697, Mar. 2006, doi: 10.1016/J.EJOR.2004.06.013.
[15] C. S. Ong, J. J. Huang, and G. H. Tzeng, “Building credit scoring models using genetic programming,” Expert Syst. Appl., vol. 29, no. 1, pp. 41–47, Jul. 2005, doi: 10.1016/J.ESWA.2005.01.003.
[16] A. Vellido, P. J. G. Lisboa, and J. Vaughan, “Neural networks in business: a survey of applications (1992–1998),” Expert Syst. Appl., vol. 17, no. 1, pp. 51–70, Jul. 1999, doi: 10.1016/S0957-4174(99)00016-0.
[17] B. K. Wong and Y. Selvi, “Neural network applications in finance: A review and analysis of literature (1990–1996),” Inf. Manag., vol. 34, no. 3, pp. 129–139, Oct. 1998, doi: 10.1016/S0378-7206(98)00050-0.
[18] M. R. Dewi, “Klasifikasi akses internet oleh anak-anak dan remaja dewasa di Jawa Timur menggunakan support vector machine,” J. Ris. dan Apl. Mat., vol. 4, no. 1, pp. 17–27, 2020.
[19] T. Oribel and D. Hanggraeni, “An Application of Machine Learning in Financial Distress Prediction Cases in Indonesia,” Int. J. Bus. Technol. Manag., vol. 3, no. 2, pp. 98–110, 2021.
[20] U. Z. Nisa, B. Santosa, and S. E. Wiratno, “Model Prediksi Finansial Distress Pada Perusahaan Manufaktur Go Public di Indonesia,” in Prosiding Seminar Nasional Manajemen Teknologi, 2013, vol. 18, pp. 1–8.
[21] N. Santoso and W. Wibowo, “Financial distress prediction using linear discriminant analysis and support vector machine,” in Journal of Physics: Conference Series, 2018, vol. 979, no. 1, p. 12089.
[22] S. Gupta, B. Parekh, and A. Jivani, “A Hybrid Model of Clustering and Classification to Enhance the Performance of a Classifier,” 2019, pp. 383–396. doi: 10.1007/978-981-15-0111-1_34.
[23] S. Cui, Y. Wang, Y. Yin, T. C. E. Cheng, D. Wang, and M. Zhai, “A cluster-based intelligence ensemble learning method for classification problems,” Inf. Sci. (Ny)., vol. 560, pp. 386–409, Jun. 2021, doi: 10.1016/J.INS.2021.01.061.
[24] H. Gan, N. Sang, R. Huang, X. Tong, and Z. Dan, “Using clustering analysis to improve semi-supervised classification,” Neurocomputing, vol. 101, pp. 290–298, Feb. 2013, doi: 10.1016/J.NEUCOM.2012.08.020.
[25] J. Xiao, Y. Tian, L. Xie, X. Jiang, and J. Huang, “A Hybrid Classification Framework Based on Clustering,” IEEE Trans. Ind. Informatics, vol. 16, no. 4, pp. 2177–2188, Apr. 2020, doi: 10.1109/TII.2019.2933675.
[26] N.-C. Hsieh, “Hybrid mining approach in the design of credit scoring models,” Expert Syst. Appl., vol. 28, no. 4, pp. 655–665, 2005.
[27] C. Cortes, V. Vapnik, and L. Saitta, “Support-vector networks,” Mach. Learn. 1995 203, vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.
[28] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering,” ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, Sep. 1999, doi: 10.1145/331499.331504.
[29] C. F. Tsai and M. L. Chen, “Credit rating by hybrid machine learning techniques,” Appl. Soft Comput., vol. 10, no. 2, pp. 374–380, Mar. 2010, doi: 10.1016/J.ASOC.2009.08.003.
[30] M. Bekkar, D. Kheliouane Djemaa, and D. Akrouf Alitouche, “Evaluation Measures for Models Assessment over Imbalanced Data Sets,” vol. 3, no. 10, 2013, Accessed: Oct. 21, 2022. [Online]. Available: www.iiste.org
[31] P. Kumar, R. Bhatnagar, K. Gaur, and A. Bhatnagar, “Classification of imbalanced data: review of methods and applications,” in IOP conference series: materials science and engineering, 2021, vol. 1099, no. 1, p. 12077.
Refbacks
- There are currently no refbacks.