Analisis Perbandingan Algoritma Decision Tree (C4.5) Dan K-Naive Bayes Untuk Mengklasifikasi Penerimaan Mahasiswa Baru Tingkat Universitas
Abstract
Keywords
Full Text:
PDFReferences
Angra, S. and Ahuja, S. (2016) ‘Analysis of student’s data using rapid miner’, Journal on Today’s Ideas - Tomorrow’s Technologies, 4(1), pp. 49–58. doi: 10.15415/jotitt.2016.41004.
Brauning, M. et al. (2017) ‘Lexicographic preferences for predictive modeling of human decision making: A new machine learning method with an application in accounting’, European Journal of Operational Research, 258(1), pp. 295–306. doi: 10.1016/j.ejor.2016.08.055.
Chen, L. and Wang, S. (2012) ‘Automated Feature Weighting In Naive Bayes For High-dimensional Data Classification’, Proceedings of the ACM International Conference on Information and Knowledge Management, pp. 1243–1252. doi: 10.1145/2396761.2398426.
Jannach, D., Jugovac, M. and Lerche, L. (2016) ‘Supporting the Design of Machine Learning Workflows with a Recommendation System’, ACM Transactions on Interactive Intelligent Systems, 6(1), pp. 1–35. doi: 10.1145/2852082.
Kitcharoen, N. et al. (2013) ‘RapidMiner Framework for Manufacturing DataAnalysis on the Cloud’, 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 1–6. doi: 10.1109/JCSSE.2013.6567336.
S. Rana and A. Singh (2016) ‘Comparative Analysis of Sentiment Orientation Using SVM and Naive Bayes Techniques’, (October), pp. 106–111.
Refbacks
- There are currently no refbacks.