Deep Learning Architecture Model for Iris Image Segmentation in Biometrics
Abstract
Abstrak :
Teknologi biometrik memanfaatkan karakteristik fisik atau perilaku manusia untuk identifikasi dan verifikasi identitas, dengan salah satu implementasi paling signifikan adalah biometrik iris. Teknologi ini menggunakan pola unik pada iris mata untuk tujuan identifikasi yang aman dan andal, namun masih menghadapi tantangan dalam memastikan segmentasi citra yang konsisten. Penelitian ini berfokus pada pengembangan segmentasi citra iris menggunakan deep learning sebagai langkah krusial dalam proses identifikasi biometrik iris. Segmentasi citra bertujuan untuk memisahkan wilayah iris dari bagian mata lainnya, seperti pupil, sklera, dan kelopak mata, namun proses ini memerlukan pendekatan yang lebih canggih untuk mengatasi variasi citra. Penelitian ini mengimplementasikan arsitektur deep learning populer, yaitu DeepLabV3 dan U-Net, untuk segmentasi citra iris. Evaluasi performa dilakukan menggunakan metrik IoU Score, Accuracy, Precision, Recall, dan F1-Score. Hasil pengujian menunjukkan bahwa DeepLabV3 memberikan kinerja terbaik dengan IoU Score sebesar 0,918, Accuracy sebesar 0,993, Precision sebesar 0,962, Recall sebesar 0,952, dan F1-Score sebesar 0,957. Keunggulan DeepLabV3 terletak pada kemampuannya dalam melakukan ekstraksi fitur yang kompleks dan menangkap konteks informasi pada berbagai skala secara efektif. Temuan ini menggarisbawahi potensi besar penerapan deep learning dalam segmentasi citra iris untuk sistem biometrik. Dengan performa optimal yang dicapai oleh DeepLabV3, teknologi ini dapat diandalkan untuk meningkatkan akurasi dan efisiensi proses identifikasi biometrik, membuka peluang luas untuk pengembangan lebih lanjut dalam aplikasi keamanan berbasis iris.
===================================================
Abstract :
Biometric technology is an innovation that uses human physical or behavioral characteristics for identity determination and verification with an aspect of its most significant implementations identified to be iris biometrics. The technology uses unique patterns in iris for secure and reliable identification purposes but certain challenges are encountered in ensuring consistent image segmentation. Therefore, this research focuses on developing iris image segmentation using deep learning as an important step in biometric identification process. Image segmentation aims to separate iris region from other parts of the eye, such as the pupil, sclera, and eyelids. However, the process requires a more sophisticated method to overcome image variations. This research implements popular deep learning architectures, DeepLabV3 and U-Net, for the segmentation. Subsequently, the performance of the models was evaluated based on the IoU Score, accuracy, precision, recall, and F1-score metrics. The results showed that DeepLabV3 provided the best performance with an IoU Score of 0.918, accuracy of 0.993, precision of 0.962, recall of 0.952, and F1-score of 0.957. The advantage of the model was associated with the ability to effectively extract complex features and capture information context at different scales. The observation was an indication of the significant potential possessed by deep learning applications in iris image segmentation for biometric systems. Moreover, the optimal performance achieved by DeepLabV3 showed the possibility of depending on the technology to improve the accuracy and efficiency of biometric identification process, opening up broad opportunities for further development in iris-based security applications.
Keywords
Full Text:
PDFReferences
[1] Liang, Y., Samtani, S., Guo, B., and Yu, Z., "Behavioral biometrics for continuous authentication in the internet-of-things era: An artificial intelligence perspective," IEEE Internet of Things Journal, vol. 7, no. 9, pp. 9128-9143, 2020. DOI: https://doi.org/10.1109/JIOT.2020.3004077.
[2] Hernandez-de-Menendez, M., Morales-Menendez, R., Escobar, C. A., and Arinez, J., "Biometric applications in education," International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 15, pp. 365-380, 2021. DOI: https://doi.org/10.1007/s12008-021-00760-6.
[3] Szymkowski, M., Jasiński, P., and Saeed, K., "Iris-based human identity recognition with machine learning methods and discrete fast Fourier transform," Innovations in Systems and Software Engineering, vol. 17, no. 3, pp. 309-317, 2021. DOI: https://doi.org/10.1007/s11334-021-00392-9.
[4] Ammour, B., Boubchir, L., Bouden, T., and Ramdani, M., "Face–iris multimodal biometric identification system," Electronics, vol. 9, no. 1, p. 85, 2020. DOI: https://doi.org/10.3390/electronics9010085.
[5] Dargan, S., and Kumar, M., "A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities," Expert Systems with Applications, vol. 143, p. 113114, 2020. DOI: https://doi.org/10.1016/j.eswa.2019.113114.
[6] Kausar, F., "Iris based cancelable biometric cryptosystem for secure healthcare smart card," Egyptian Informatics Journal, vol. 22, no. 4, pp. 447-453, 2021. DOI: https://doi.org/10.1016/j.eij.2021.01.004.
[7] Gautam, G., and Mukhopadhyay, S., "Challenges, taxonomy and techniques of iris localization: A survey," Digital Signal Processing, vol. 107, p. 102852, 2020. DOI: https://doi.org/10.1016/j.dsp.2020.102852.
[8] Li, Y. H., Putri, W. R., Aslam, M. S., and Chang, C. C., "Robust iris segmentation algorithm in non-cooperative environments using interleaved residual U-Net," Sensors, vol. 21, no. 4, p. 1434, 2021. DOI: https://doi.org/10.3390/s21041434.
[9] Ahamed, F., Farid, F., Suleiman, B., Jan, Z., Wahsheh, L. A., and Shahrestani, S., "An intelligent multimodal biometric authentication model for personalised healthcare services," Future Internet, vol. 14, no. 8, p. 222, 2022. DOI: https://doi.org/10.3390/fi14080222.
[10] Mesejo, P., Martos, R., Ibáñez, Ó., Novo, J., and Ortega, M., "A survey on artificial intelligence techniques for biomedical image analysis in skeleton-based forensic human identification," Applied Sciences, vol. 10, no. 14, p. 4703, 2020. DOI: https://doi.org/10.3390/app10144703.
[11] Edwards, T., and Hossain, M. S., "Effectiveness of deep learning on serial fusion based biometric systems," IEEE Transactions on Artificial Intelligence, vol. 2, no. 1, pp. 28-41, 2021. DOI: https://doi.org/10.1109/TAI.2021.3064003.
[12] Trabelsi, S., Samai, D., Dornaika, F., Benlamoudi, A., Bensid, K., and Taleb-Ahmed, A., "Efficient palmprint biometric identification systems using deep learning and feature selection methods," Neural Computing and Applications, vol. 34, no. 14, pp. 12119-12141, 2022. DOI: https://doi.org/10.1007/s00521-022-07098-4.
[13] Conti, V., Rundo, L., Militello, C., Salerno, V. M., Vitabile, S., and Siniscalchi, S. M., "A multimodal retina‐iris biometric system using the Levenshtein distance for spatial feature comparison," IET Biometrics, vol. 10, no. 1, pp. 44-64, 2021. DOI: https://doi.org/10.1049/bme2.12001.
[14] Albalawi, S., Alshahrani, L., Albalawi, N., Kilabi, R., and Alhakamy, A. A., "A comprehensive overview on biometric authentication systems using artificial intelligence techniques," International Journal of Advanced Computer Science and Applications, vol. 13, no. 4, pp. 1-11, 2022. DOI: https://dx.doi.org/10.14569/IJACSA.2022.0130491.
[15] Awad, A. I., Babu, A., Barka, E., and Shuaib, K., "AI-powered biometrics for Internet of Things security: A review and future vision," Journal of Information Security and Applications, vol. 82, p. 103748, 2024. DOI: https://doi.org/10.1016/j.jisa.2024.103748.
[16] Akış, U., and Dişlitaş, S., "Intelligent Lighting System Using Color-Based Image Processing for Object Detection in Robotic Handling Applications," Applied Sciences, vol. 14, no. 7, p. 3002, 2024. DOI: https://doi.org/10.3390/app14073002.
[17] Jan, F., and Min-Allah, N., "An effective iris segmentation scheme for noisy images," Biocybernetics and Biomedical Engineering, vol. 40, no. 3, pp. 1064-1080, 2020. DOI: https://doi.org/10.1016/j.bbe.2020.06.002.
[18] Malinowski, K., and Saeed, K., "An iris segmentation using harmony search algorithm and fast circle fitting with blob detection," Biocybernetics and Biomedical Engineering, vol. 42, no. 1, pp. 391-403, 2022. DOI: https://doi.org/10.1016/j.bbe.2022.02.010.
[19] Wang, C., Muhammad, J., Wang, Y., He, Z., and Sun, Z., "Towards complete and accurate iris segmentation using deep multi-task attention network for non-cooperative iris recognition," IEEE Transactions on Information Forensics and Security, vol. 15, pp. 2944-2959, 2020. DOI: https://doi.org/10.1109/TIFS.2020.2980791.
[20] Boutros, F., Damer, N., Raja, K., Ramachandra, R., Kirchbuchner, F., and Kuijper, A., "Iris and periocular biometrics for head mounted displays: Segmentation, recognition, and synthetic data generation," Image and Vision Computing, vol. 104, p. 104007, 2020. DOI: https://doi.org/10.1016/j.imavis.2020.104007.
[21] Sardar, M., Banerjee, S., and Mitra, S., "Iris segmentation using interactive deep learning," IEEE Access, vol. 8, pp. 219322-219330, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3041519.
[22] Chen, Y., Gan, H., Chen, H., Zeng, Y., Xu, L., Heidari, A. A., Zhu, X., and Liu, Y., "Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet," Neurocomputing, vol. 517, pp. 264-278, 2023. DOI: https://doi.org/10.1016/j.neucom.2022.10.064.
[23] Fathee, H., and Sahmoud, S., "Iris segmentation in uncooperative and unconstrained environments: state-of-the-art, datasets and future research directions," Digital Signal Processing, vol. 118, p. 103244, 2021. DOI: https://doi.org/10.1016/j.dsp.2021.103244.
[24] Gautam, G., and Mukhopadhyay, S., "Challenges, taxonomy and techniques of iris localization: A survey," Digital Signal Processing, vol. 107, p. 102852, 2020. DOI: https://doi.org/10.1016/j.dsp.2020.102852.
[25] Zhuang, Q., Kehua, Z., Wang, J., and Chen, Q., "Driver fatigue detection method based on eye states with pupil and iris segmentation," IEEE Access, vol. 8, pp. 173440-173449, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3025818.
[26] Jalilian, E., Karakaya, M., and Uhl, A., "CNN‐based off‐angle iris segmentation and recognition," IET Biometrics, vol. 10, no. 5, pp. 518-535, 2021. DOI: https://doi.org/10.1049/bme2.12052.
[27] Nguyen, K., Proença, H., and Alonso-Fernandez, F., "Deep learning for iris recognition: A survey," ACM Computing Surveys, vol. 56, no. 9, pp. 1-35, 2024. DOI: https://doi.org/10.1145/3651306.
[28] Wei, Y., Zhang, X., Zeng, A., and Huang, H., "Iris recognition method based on parallel iris localization algorithm and deep learning iris verification," Sensors, vol. 22, no. 20, p. 7723, 2022. DOI: https://doi.org/10.3390/s22207723.
[29] Yuan, X., Shi, J., and Gu, L., "A review of deep learning methods for semantic segmentation of remote sensing imagery," Expert Systems with Applications, vol. 169, p. 114417, 2021. DOI: https://doi.org/10.1016/j.eswa.2020.114417.
[30] Liu, X., Song, L., Liu, S., and Zhang, Y., "A review of deep-learning-based medical image segmentation methods," Sustainability, vol. 13, no. 3, p. 1224, 2021. DOI: https://doi.org/10.3390/su13031224.
[31] Wang, S., Li, C., Wang, R., Liu, Z., Wang, M., Tan, H., Wu, Y., Liu, X., Sun, H., Yang, R., and Liu, X., "Annotation-efficient deep learning for automatic medical image segmentation," Nature Communications, vol. 12, no. 1, p. 5915, 2021. DOI: https://doi.org/10.1038/s41467-021-26216-9.
[32] Taye, M. M., "Understanding of machine learning with deep learning: architectures, workflow, applications and future directions," Computers, vol. 12, no. 5, p. 91, 2023. DOI: https://doi.org/10.3390/computers12050091.
[33] Tang, Y., Tan, D., Li, H., Zhu, M., Li, X., Wang, X., Wang, J., Wang, Z., Gao, C., Wang, J., and Han, A., "RTC_TongueNet: An improved tongue image segmentation model based on DeepLabV3," Digital Health, vol. 10, p. 20552076241242773, 2024. DOI: https://doi.org/10.1177/20552076241242773.
[34] Wang, Y., "Remote sensing image semantic segmentation algorithm based on improved ENet network," Scientific Programming, vol. 2021, p. 5078731, 2021. DOI: https://doi.org/10.1155/2021/5078731.
[35] Yojana, K., and Rani, L. T., "OCT layer segmentation using U-Net semantic segmentation and RESNET34 encoder-decoder," Measurement: Sensors, vol. 29, p. 100817, 2023. DOI: https://doi.org/10.1016/j.measen.2023.100817.
[36] Aboussaleh, I., Riffi, J., Fazazy, K. E., Mahraz, M. A., and Tairi, H., "Efficient U-Net architecture with multiple encoders and attention mechanism decoders for brain tumor segmentation," Diagnostics, vol. 13, no. 5, p. 872, 2023. DOI: https://doi.org/10.3390/diagnostics13050872.
[37] Lin, K. C., and Chen, Y. M., "A high-security-level iris cryptosystem based on fuzzy commitment and soft reliability extraction," IEEE Transactions on Dependable and Secure Computing, 2023. DOI: https://doi.org/10.1109/TDSC.2023.3289916.
[38] Lin, K. C., and Chen, Y. M., "A high-security-level iris recognition system based on multi-scale dominating feature points," IEEE Signal Processing Letters, 2024. DOI: https://doi.org/10.1109/LSP.2024.3411513.
[39] Jain, A. K., Deb, D., and Engelsma, J. J., "Biometrics: Trust, but verify," IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 4, no. 3, pp. 303-323, 2021. DOI: https://doi.org/10.1109/TBIOM.2021.3115465.
[40] Srivastava, R., Bhardwaj, V. P., Othman, M. T. B., Pushkarna, M., Anushree, Mangla, A., Bajaj, M., Rehman, A. U., Shafiq, M., and Hamam, H., "Match-level fusion of finger-knuckle print and iris for human identity validation using neuro-fuzzy classifier," Sensors, vol. 22, no. 10, p. 3620, 2022. DOI: https://doi.org/10.3390/s22103620.
[41] Mróz-Gorgoń, B., Wodo, W., Andrych, A., Caban-Piaskowska, K., and Kozyra, C., "Biometrics innovation and payment sector perception," Sustainability, vol. 14, no. 15, p. 9424, 2022. DOI: https://doi.org/10.3390/su14159424.
[42] Mason, J., Dave, R., Chatterjee, P., Graham-Allen, I., Esterline, A., and Roy, K., "An investigation of biometric authentication in the healthcare environment," Array, vol. 8, p. 100042, 2020. DOI: https://doi.org/10.1016/j.array.2020.100042.
[43] Umer, S., Sardar, A., Dhara, B. C., Rout, R. K., and Pandey, H. M., "Person identification using fusion of iris and periocular deep features," Neural Networks, vol. 122, pp. 407-419, 2020. DOI: https://doi.org/10.1016/j.neunet.2019.11.009.
[44] Nsaif, A. K., Ali, S. H. M., Nseaf, A. K., Jassim, K. N., Al-Qaraghuli, A., and Sulaiman, R., "Robust and swift iris recognition at distance based on novel pupil segmentation," Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 10, pp. 9184-9206, 2022. DOI: https://doi.org/10.1016/j.jksuci.2022.09.002.
[45] Zhang, C., and Lu, Y., "Study on artificial intelligence: The state of the art and future prospects," Journal of Industrial Information Integration, vol. 23, p. 100224, 2021. DOI: https://doi.org/10.1016/j.jii.2021.100224.
[46] Sarker, I. H., "AI-based modeling: techniques, applications and research issues towards automation, intelligent and smart systems," SN Computer Science, vol. 3, no. 2, p. 158, 2022. DOI: https://doi.org/10.1007/s42979-022-01043-x.
[47] Lauriola, I., Lavelli, A., and Aiolli, F., "An introduction to deep learning in natural language processing: Models, techniques, and tools," Neurocomputing, vol. 470, pp. 443-456, 2022. DOI: https://doi.org/10.1016/j.neucom.2021.05.103.
[48] Adeyanju, I. A., Bello, O. O., and Adegboye, M. A., "Machine learning methods for sign language recognition: A critical review and analysis," Intelligent Systems with Applications, vol. 12, p. 200056, 2021. DOI: https://doi.org/10.1016/j.iswa.2021.200056.
[49] Rubinger, L., Gazendam, A., Ekhtiari, S., and Bhandari, M., "Machine learning and artificial intelligence in research and healthcare," Injury, vol. 54, pp. S69-S73, 2023. DOI: https://doi.org/10.1016/j.injury.2022.01.046.
[50] Ding, R. X., Palomares, I., Wang, X., Yang, G. R., Liu, B., Dong, Y., Herrera-Viedma, E., and Herrera, F., "Large-scale decision-making: Characterization, taxonomy, challenges and future directions from an artificial intelligence and applications perspective," Information Fusion, vol. 59, pp. 84-102, 2020. DOI: https://doi.org/10.1016/j.inffus.2020.01.006.
[51] Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi, M., and Piccialli, F., "Scientific machine learning through physics–informed neural networks: Where we are and what’s next," Journal of Scientific Computing, vol. 92, no. 3, p. 88, 2022. DOI: https://doi.org/10.1007/s10915-022-01939-z.
[52] Shrestha, Y. R., Krishna, V., and von Krogh, G., "Augmenting organizational decision-making with deep learning algorithms: Principles, promises, and challenges," Journal of Business Research, vol. 123, pp. 588-603, 2021. DOI: https://doi.org/10.1016/j.jbusres.2020.09.068.
[53] Mahmud, M., Kaiser, M. S., McGinnity, T. M., and Hussain, A., "Deep learning in mining biological data," Cognitive Computation, vol. 13, no. 1, pp. 1-33, 2021. DOI: https://doi.org/10.1007/s12559-020-09773-x.
[54] Nabavinejad, S. M., Baharloo, M., Chen, K. C., Palesi, M., Kogel, T., and Ebrahimi, M., "An overview of efficient interconnection networks for deep neural network accelerators," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 10, no. 3, pp. 268-282, 2020. DOI: https://doi.org/10.1109/JETCAS.2020.3022920.
[55] Gupta, L., Salman, T., Ghubaish, A., Unal, D., Al-Ali, A. K., and Jain, R., "Cybersecurity of multi-cloud healthcare systems: A hierarchical deep learning approach," Applied Soft Computing, vol. 118, p. 108439, 2022. DOI: https://doi.org/10.1016/j.asoc.2022.108439.
[56] Wang, X., Zhao, Y., and Pourpanah, F., "Recent advances in deep learning," International Journal of Machine Learning and Cybernetics, vol. 11, pp. 747-750, 2020. DOI: https://doi.org/10.1007/s13042-020-01096-5.
[57] Dong, S., Wang, P., and Abbas, K., "A survey on deep learning and its applications," Computer Science Review, vol. 40, p. 100379, 2021. DOI: https://doi.org/10.1016/j.cosrev.2021.100379.
[58] Suganyadevi, S., Seethalakshmi, V., and Balasamy, K., "A review on deep learning in medical image analysis," International Journal of Multimedia Information Retrieval, vol. 11, no. 1, pp. 19-38, 2022. DOI: https://doi.org/10.1007/s13735-021-00218-1.
[59] Wei, X. S., Song, Y. Z., Mac Aodha, O., Wu, J., Peng, Y., Tang, J., Yang, J., and Belongie, S., "Fine-grained image analysis with deep learning: A survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 12, pp. 8927-8948, 2021. DOI: https://doi.org/10.1109/TPAMI.2021.3126648.
[60] Da Wang, Y., Blunt, M. J., Armstrong, R. T., and Mostaghimi, P., "Deep learning in pore scale imaging and modeling," Earth-Science Reviews, vol. 215, p. 103555, 2021. DOI: https://doi.org/10.1016/j.earscirev.2021.103555.
[61] Schulz, M. A., Yeo, B. T., Vogelstein, J. T., Mourao-Miranada, J., Kather, J. N., Kording, K., Richards, B., and Bzdok, D., "Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets," Nature Communications, vol. 11, no. 1, p. 4238, 2020. DOI: https://doi.org/10.1038/s41467-020-18037-z.
[62] Ejiogu, U. U., and Iloanusi, O. N., "Real time iris segmentation quality evaluation using medoids," Pattern Recognition, vol. 137, p. 109290, 2023. DOI: https://doi.org/10.1016/j.patcog.2022.109290.
[63] Saleh, A. H., and Menemencioğlu, O., "Study the effect of eye diseases on the performance of iris segmentation and recognition using transfer deep learning methods," Engineering Science and Technology, an International Journal, vol. 47, p. 101552, 2023. DOI: https://doi.org/10.1016/j.jestch.2023.101552.
[64] Kim, W., Kanezaki, A., and Tanaka, M., "Unsupervised learning of image segmentation based on differentiable feature clustering," IEEE Transactions on Image Processing, vol. 29, pp. 8055-8068, 2020. DOI: https://doi.org/10.1109/TIP.2020.3011269.
[65] Kheradmandi, N., and Mehranfar, V., "A critical review and comparative study on image segmentation-based techniques for pavement crack detection," Construction and Building Materials, vol. 321, p. 126162, 2022. DOI: https://doi.org/10.1016/j.conbuildmat.2021.126162.
[66] Chowdhary, C. L., and Acharjya, D. P., "Segmentation and feature extraction in medical imaging: A systematic review," Procedia Computer Science, vol. 167, pp. 26-36, 2020. DOI: https://doi.org/10.1016/j.procs.2020.03.179.
[67] Haque, I. R. I., and Neubert, J., "Deep learning approaches to biomedical image segmentation," Informatics in Medicine Unlocked, vol. 18, p. 100297, 2020. DOI: https://doi.org/10.1016/j.imu.2020.100297.
[68] Zhang, C., Zou, K., and Pan, Y., "A method of apple image segmentation based on color-texture fusion feature and machine learning," Agronomy, vol. 10, no. 7, p. 972, 2020. DOI: https://doi.org/10.3390/agronomy10070972.
[69] Fan, P., Lang, G., Yan, B., Lei, X., Guo, P., Liu, Z., and Yang, F., "A method of segmenting apples based on gray-centered RGB color space," Remote Sensing, vol. 13, no. 6, p. 1211, 2021. DOI: https://doi.org/10.3390/rs13061211.
[70] Yu, Y., Wang, C., Fu, Q., Kou, R., Huang, F., Yang, B., Yang, T., and Gao, M., "Techniques and challenges of image segmentation: A review," Electronics, vol. 12, no. 5, p. 1199, 2023. DOI: https://doi.org/10.3390/electronics12051199.
[71] Fawzi, A., Achuthan, A., and Belaton, B., "Brain image segmentation in recent years: A narrative review," Brain Sciences, vol. 11, no. 8, p. 1055, 2021. DOI: https://doi.org/10.3390/brainsci11081055.
[72] Ronneberger, O., Fischer, P., and Brox, T., "U-Net: Convolutional networks for biomedical image segmentation," in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015: 18th International Conference, Munich, Germany, Proceedings, Part III, vol. 9351, pp. 234-241, Springer International Publishing, 2015. DOI: https://doi.org/10.1007/978-3-319-24574-4_28.
[73] Punn, N. S., and Agarwal, S., "Modality specific U-Net variants for biomedical image segmentation: A survey," Artificial Intelligence Review, vol. 55, no. 7, pp. 5845-5889, 2022. DOI: https://doi.org/10.1007/s10462-022-10152-1.
[74] Wong, K. K., Xu, W., Ayoub, M., Fu, Y. L., Xu, H., Shi, R., Zhang, M., Su, F., Huang, Z., and Chen, W., "Brain image segmentation of the corpus callosum by combining Bi-Directional Convolutional LSTM and U-Net using multi-slice CT and MRI," Computer Methods and Programs in Biomedicine, vol. 238, p. 107602, 2023. DOI: https://doi.org/10.1016/j.cmpb.2023.107602.
[75] Hussain, S., Guo, F., Li, W., and Shen, Z., "DilUnet: A U-Net based architecture for blood vessels segmentation," Computer Methods and Programs in Biomedicine, vol. 218, p. 106732, 2022. DOI: https://doi.org/10.1016/j.cmpb.2022.106732.
[76] Arora, A., Jayal, A., Gupta, M., Mittal, P., and Satapathy, S. C., "Brain tumor segmentation of MRI images using processed image driven U-Net architecture," Computers, vol. 10, no. 11, p. 139, 2021. DOI: https://doi.org/10.3390/computers10110139.
[77] Chen, L. C., Papandreou, G., Schroff, F., and Adam, H., "Rethinking atrous convolution for semantic image segmentation," arXiv preprint, arXiv:1706.05587, 2017. DOI: https://doi.org/10.48550/arXiv.1706.05587.
[78] Ahmed, I., Ahmad, M., Khan, F. A., and Asif, M., "Comparison of deep-learning-based segmentation models: Using top view person images," IEEE Access, vol. 8, pp. 136361-136373, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.3011406.
[79] Dabove, P., Daud, M., and Olivotto, L., "Revolutionizing urban mapping: deep learning and data fusion strategies for accurate building footprint segmentation," Scientific Reports, vol. 14, no. 1, p. 13510, 2024. DOI: https://doi.org/10.1038/s41598-024-64231-0.
[80] Khan, A., Kim, H., and Chua, L., "PMED-net: Pyramid based multi-scale encoder-decoder network for medical image segmentation," IEEE Access, vol. 9, pp. 55988-55998, 2021. DOI: https://doi.org/10.1109/ACCESS.2021.3071754.
[81] Yan, Y., Liu, Y., Wu, Y., Zhang, H., Zhang, Y., and Meng, L., "Accurate segmentation of breast tumors using AE U-net with HDC model in ultrasound images," Biomedical Signal Processing and Control, vol. 72, p. 103299, 2022. DOI: https://doi.org/10.1016/j.bspc.2021.103299.
[82] Jia, W., Zhang, Z., Shao, W., Hou, S., Ji, Z., Liu, G., and Yin, X., "FoveaMask: A fast and accurate deep learning model for green fruit instance segmentation," Computers and Electronics in Agriculture, vol. 191, p. 106488, 2021. DOI: https://doi.org/10.1016/j.compag.2021.106488.
[83] Sathiyamoorthi, V., Ilavarasi, A. K., Murugeswari, K., Ahmed, S. T., Devi, B. A., and Kalipindi, M., "A deep convolutional neural network based computer aided diagnosis system for the prediction of Alzheimer's disease in MRI images," Measurement, vol. 171, p. 108838, 2021. DOI: https://doi.org/10.1016/j.measurement.2020.108838.
[84] Omelina, L., Goga, J., Pavlovicova, J., Oravec, M., and Jansen, B., "A survey of iris datasets," Image and Vision Computing, vol. 108, p. 104109, 2021. DOI: https://doi.org/10.1016/j.imavis.2021.104109.
[85] Mumuni, A., and Mumuni, F., "Data augmentation: A comprehensive survey of modern approaches," Array, vol. 16, p. 100258, 2022. DOI: https://doi.org/10.1016/j.array.2022.100258.
[86] Varkarakis, V., Bazrafkan, S., and Corcoran, P., "Deep neural network and data augmentation methodology for off-axis iris segmentation in wearable headsets," Neural Networks, vol. 121, pp. 101-121, 2020. DOI: https://doi.org/10.1016/j.neunet.2019.07.020.
[87] Raj, R., Mathew, J., Kannath, S. K., and Rajan, J., "Crossover based technique for data augmentation," Computer Methods and Programs in Biomedicine, vol. 218, p. 106716, 2022. DOI: https://doi.org/10.1016/j.cmpb.2022.106716.
[88] Benedetti, P., Femminella, M., and Reali, G., "Mixed-sized biomedical image segmentation based on U-Net architectures," Applied Sciences, vol. 13, no. 1, p. 329, 2022. DOI: https://doi.org/10.3390/app13010329.
[89] Kunang, Y. N., Nurmaini, S., Stiawan, D., and Suprapto, B. Y., "Attack classification of an intrusion detection system using deep learning and hyperparameter optimization," Journal of Information Security and Applications, vol. 58, p. 102804, 2021. DOI: https://doi.org/10.1016/j.jisa.2021.102804.
[90] Lee, S., Kim, J., Kang, H., Kang, D. Y., and Park, J., "Genetic algorithm based deep learning neural network structure and hyperparameter optimization," Applied Sciences, vol. 11, no. 2, p. 744, 2021. DOI: https://doi.org/10.3390/app11020744.
[91] Huo, G., Lin, D. and Yuan, M., “Iris segmentation method based on improved UNet++,” Multimedia Tools and Applications, vol. 81, no.28, pp.41249-41269, 2022. DOI: https://doi.org/10.1007/s11042-022-13198-z
[92] Yoon, H., Park, M., Lee, H., An, J., Lee, T. and Lee, S.H., “Deep learning framework for bovine iris segmentation,” Journal of Animal Science and Technology, vol. 66, no.1, p.167, 2024. DOI: https://doi.org/10.5187/jast.2023.e51
Refbacks
- There are currently no refbacks.