Potential Role of Plant Growth-Promoting Halotolerant Bacteria in Enhancing Shallot Growth under Salinity Stress
Abstract
Keywords
Full Text:
PDFReferences
Ahmed, A. F., Dahdouh, S. M., Abu-hashim, M., & Merwad, A. R. M. (2025). Integration of organic amendments and phosphate-solubilizing bacteria improves wheat growth and yield by modulating phosphorus availability and physiological reponses. Journal of Plant Nutrition, 48(7), 1144–1165. https://doi.org/10.1080/01904167.2024.2422586
Akhzari, D., Pessarakli, M., Mahdavi, S., & Ariapour, A. (2022). Impact of drought, salinity, and heavy metal stress on growth, nutrient uptake, and physiological traits of vetiver grass (Chrysopogon zizanioides L.). Communications in Soil Science and Plant Analysis, 53(14), 1841–1847. https://doi.org/10.1080/00103624.2022.2063327
Alam, M. A., Rahman, M. A., Rahman, M. M., Hasan, M. M., Naher, S., Fahim, A. H. F., ..., & Hossain, A. (2023). Performance valuation of onion (Allium cepa L.) genotypes under different levels of salinity for the development of cultivars suitable for saline regions. Frontiers in Plant Science, 14, 1154051. https://doi.org/10.3389/fpls.2023.1154051
Andrés, C. M. C., Pérez de la Lastra, J. M., Andrés Juan, C., Plou, F. J., & Pérez-Lebeña, E. (2023). Superoxide anion chemistry—Its role at the core of the innate immunity. International Journal of Molecular Sciences, 24(3), 1841. https://doi.org/10.3390/ijms24031841
Andrés-Barrao, C., Alzubaidy, H., Jalal, R., Mariappan, K. G., de Zélicourt, A., Bokhari, A., ..., & Hirt, H. (2021). Coordinated bacterial and plant sulfur metabolism in Enterobacter sp. SA187–induced plant salt stress tolerance. Proceedings of the National Academy of Sciences, 118(46), e2107417118. https://doi.org/10.1073/pnas.2107417118
Anwar, N. H. A., Karyawati, A. S., Maghfoer, Moch. D., & Kurniawan, A. (2024). Organic fertilizer alleviates salt stress in shallot by modulating plant physiological responses. Journal of Ecological Engineering, 25(7), 286–294. https://doi.org/10.12911/22998993/188880
Armanisa, K., Rusmana, I., & Astuti, R. I. (2024). Diversity of rhizospheric bacterial community from kaolin mining site and their potential as plant growth promoting bacteria. HAYATI Journal of Biosciences, 32(1), 212–222. https://doi.org/10.4308/hjb.32.1.212-222
Atouei, M. T., Pourbabaee, A. A., & Shorafa, M. (2019). Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria. Iranian Journal of Science and Technology, Transactions A: Science, 43(5), 2725–2733. https://doi.org/10.1007/s40995-019-00753-x
Bakka, K., Gopika, P. V., Sreelakshmi, H., & Challabathula, D. (2022). Halotolerant plant growth promoting rhizobacteria: A futuristic direction to salt stress tolerance. Plant Stress: Challenges and Management in the New Decade (pp. 277–293). Springer International Publishing. https://doi.org/10.1007/978-3-030-95365-2_17
Baldani, J. I., Reis, V. M., Videira, S. S., Boddey, L. H., & Baldani, V. L. D. (2014). The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: A practical guide for microbiologists. Plant and Soil, 384(1–2), 413–431. https://doi.org/10.1007/s11104-014-2186-6
Bao, X. G., Chong, P. F., He, C., Lu, X. M., Wang, X. Y., Zhang, F., ..., & Gao, L. L. (2025). Enterobacter-inoculation altered the C, N contents and regulated biomass allocation in Reaumuria soongorica to promote plant growth and improve salt stress tolerance. Frontiers in Plant Science, 15, 1502659. https://doi.org/10.3389/fpls.2024.1502659
Beitsayahi, F., Enayatizamir, N., Nejadsadeghi, L., & Nasernakhaei, F. (2025). Plant growth‐promoting bacteria associated with some salt‐tolerant plants. Journal of Basic Microbiology, 65(2), e2400446. https://doi.org/10.1002/jobm.202400446
Bhagat, N., Raghav, M., Dubey, S., & Bedi, N. (2021). Bacterial exopolysaccharides: Insight into their role in plant abiotic stress tolerance. Journal of Microbiology and Biotechnology, 31(8), 1045–1059. https://doi.org/10.4014/jmb.2105.05009
Bharti, N., Yadav, D., Barnawal, D., Maji, D., & Kalra, A. (2013). Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World Journal of Microbiology and Biotechnology, 29(2), 379–387. https://doi.org/10.1007/s11274-012-1192-1
Boubekri, K., Soumare, A., Mardad, I., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., & Kouisni, L. (2021). The screening of potassium- and phosphate-solubilizing Actinobacteria and the assessment of their ability to promote wheat growth parameters. Microorganisms, 9(3), 470. https://doi.org/10.3390/microorganisms9030470
Chang, X., Kingsley, K., & White, J. F. (2021). Chemical interactions at the interface of plant root hair cells and intracellular bacteria. Microorganisms, 9(5), 1041. https://doi.org/10.3390/microorganisms9051041
Choudhury, A. R., Trivedi, P., Choi, J., Madhaiyan, M., Park, J., Choi, W., ..., & Sa, T. (2023). Inoculation of ACC deaminase-producing endophytic bacteria down-regulates ethylene-induced pathogenesis related signaling in red pepper (Capsicum annuum L.) under salt stress. Physiologia Plantarum, 175(2), e13909. https://doi.org/10.1111/ppl.13909
Chrysargyris, A., Höfte, M., Tzortzakis, N., Petropoulos, S. A., & Di Gioia, F. (2022). Editorial: Micronutrients: The borderline between their beneficial role and toxicity in plants. Frontiers in Plant Science, 13, 840624. https://doi.org/10.3389/fpls.2022.840624
DeGarmo, E. P., Sullivan, W. G., & Canada, J. R. (1984). Engineering Economy. Macmillan Publishers.
Dubey, R. S., Srivastava, R. K., & Pessarakli, M. (2021). Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. Handbook of Plant and Crop Physiology (p. 38). CRC Press. https://doi.org/10.1201/9781003093640
Duca, D. R., & Glick, B. R. (2020). Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Applied Microbiology and Biotechnology, 104(20), 8607–8619. https://doi.org/10.1007/s00253-020-10869-5
Fu, B., & Yan, Q. (2023). Exopolysaccharide is required for motility, stress tolerance, and plant colonization by the endophytic bacterium Paraburkholderia phytofirmans PsJN. Frontiers in Microbiology, 14, 1218653. https://doi.org/10.3389/fmicb.2023.1218653
Fu, M., Liu, L., Fu, B., Hou, M., Xiao, Y., Liu, Y., ..., & Lu, Q. (2025). Effects of salt stress on plant and rhizosphere bacterial communities, interaction patterns, and functions. Frontiers in Plant Science, 15, 1516336. https://doi.org/10.3389/fpls.2024.1516336
Garipova, S. R., Markova, O. V., Fedorova, K. A., Dedova, M. A., Iksanova, M. A., Kamaletdinova, A. A., ..., & Pusenkova, L. I. (2022). Malondialdehyde and proline content in bean cultivars following the inoculation with endophytic bacteria. Acta Physiologiae Plantarum, 44(9), 89. https://doi.org/10.1007/s11738-022-03427-1
Ghazi, A., Atia, E., & Elsakhawy, T. (2021). Evaluation of an endophytic plant growth-promoting bacterium, Klebsiella variicola, in mitigation of salt stress in tuberose (Polianthes tuberosa L.). The Journal of Horticultural Science and Biotechnology, 96(6), 770–782. https://doi.org/10.1080/14620316.2021.1926343
Girma, B., Panda, A. N., Roy, P. C., Ray, L., Mohanty, S., & Chowdhary, G. (2022). Molecular, biochemical, and comparative genome analysis of a rhizobacterial strain Klebsiella sp. KBG6.2 imparting salt stress tolerance to Oryza sativa L. Environmental and Experimental Botany, 203, 105066. https://doi.org/10.1016/j.envexpbot.2022.105066
Hachiya, T., & Okamoto, Y. (2017). Simple spectroscopic determination of nitrate, nitrite, and ammonium in Arabidopsis thaliana. Bio-Protocol, 7(10), 1–13. https://doi.org/10.21769/bioprotoc.2280
Hasanuzzaman, M., & Fujita, M. (2022). Plant responses and tolerance to salt stress: Physiological and molecular interventions. International Journal of Molecular Sciences, 23(9), 4810. https://doi.org/10.3390/ijms23094810
He, R., Liu, Y., Song, C., Feng, G., & Song, J. (2024). Osmotic regulation beyond nitrate nutrients in plant resistance to stress: A review. Plant Growth Regulation, 103(1), 1–8. https://doi.org/10.1007/s10725-023-01093-y
Henriquez, T., Wirtz, L., Su, D., & Jung, H. (2021). Prokaryotic solute/sodium symporters: Versatile functions and mechanisms of a transporter family. International Journal of Molecular Sciences, 22(4), 1880. https://doi.org/10.3390/ijms22041880
Hosseini, Z., Zare-bavani, M. R., & Zare, A. (2021). The effect of salt stress on yield and accumulation of some minerals in two salt-tolerant and susceptible onion cultivars. Desert, 26(2), 157–171. https://doi.org/10.22059/jdesert.2020.287087.1006744
Hussain, S., Hafeez, M. B., Azam, R., Mehmood, K., Aziz, M., Ercisli, S., ..., & Ren, X. (2024). Deciphering the role of phytohormones and osmolytes in plant tolerance against salt stress: Implications, possible cross-talk, and prospects. Journal of Plant Growth Regulation, 43(1), 38–59. https://doi.org/10.1007/s00344-023-11070-4
Ilyas, N., Mumtaz, K., Akhtar, N., Yasmin, H., Sayyed, R. Z., Khan, W., ..., & Ali, Z. (2020). Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability, 12(21), 8876. https://doi.org/10.3390/su12218876
Javed, S., Azhar, S., Farid, A., Gull, M., Mazhar, M. W., Haider, Z., ..., & Naeem, M. (2023). Impact of rhizospheric, nodulation and soil microbiome on soybean and rice growth for sustainable agriculture. Agricultural Sciences Journal, 5(3), 67–83. https://doi.org/10.56520/asj.v5i3.352
Kanekar, P. P., & Kanekar, S. P. (2022). Halophilic and halotolerant microorganisms. Diversity and Biotechnology of Extremophilic Microorganisms from India (pp. 13–69). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1573-4_2
Kang, S. M., Radhakrishnan, R., Lee, S. M., Park, Y. G., Kim, A. Y., Seo, C. W., & Lee, I. J. (2015). Enterobacter sp. SE992-induced regulation of amino acids, sugars, and hormones in cucumber plants improves salt tolerance. Acta Physiologiae Plantarum, 37(8), 1–10. https://doi.org/10.1007/s11738-015-1895-7
Kaushal, M. (2020). Insights into microbially induced salt tolerance and endurance mechanisms (STEM) in plants. Frontiers in Microbiology, 11, 1518. https://doi.org/10.3389/fmicb.2020.01518
Kechid, M., Desbrosses, G., Rokhsi, W., Varoquaux, F., Djekoun, A., & Touraine, B. (2013). The NRT 2.5 and NRT 2.6 genes are involved in growth promotion of Arabidopsis by the plant growth‐promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM 196. New Phytologist, 198(2), 514–524. https://doi.org/10.1111/nph.12158
Khan, S., Sehar, Z., Nidhi, Albaqami, M., & Khan, N. A. (2023). Ethylene crosstalk with isoprenoid-derived signaling molecules in the context of salinity tolerance. Environmental and Experimental Botany, 212, 105379. https://doi.org/10.1016/j.envexpbot.2023.105379
Kognou, A. L. M., Chio, C., Khatiwada, J. R., Shrestha, S., Chen, X., Han, S., ..., & Qin, W. (2022). Characterization of cellulose-degrading bacteria isolated from soil and the optimization of their culture conditions for cellulase production. Applied Biochemistry and Biotechnology, 194(11), 5060–5082. https://doi.org/10.1007/s12010-022-04002-7
Kraamwinkel, C. T., Beaulieu, A., Dias, T., & Howison, R. A. (2021). Planetary limits to soil degradation. Communications Earth & Environment, 2(1), 249. https://doi.org/10.1038/s43247-021-00323-3
Kusale, S. P., Attar, Y. C., Sayyed, R. Z., Malek, R. A., Ilyas, N., Suriani, N. L., ..., & El Enshasy, H. A. (2021). Production of plant beneficial and antioxidants metabolites by Klebsiella variicola under salinity stress. Molecules, 26(7), 1894. https://doi.org/10.3390/molecules26071894
Lee, S., Trịnh, C. S., Lee, W. J., Jeong, C. Y., Truong, H. A., Chung, N., ..., & Lee, H. (2020). Bacillus subtilis strain L1 promotes nitrate reductase activity in Arabidopsis and elicits enhanced growth performance in Arabidopsis, lettuce, and wheat. Journal of Plant Research, 133(2), 231–244. https://doi.org/10.1007/s10265-019-01160-4
Lee, Y. S., Umam, K., Kuo, T. F., Yang, Y. L., Feng, C. S., & Yang, W. C. (2024). Functional and mechanistic studies of a phytogenic formulation, Shrimp Best, in growth performance and vibriosis in whiteleg shrimp. Scientific Reports, 14(1), 11584. https://doi.org/10.1038/s41598-024-62436-x
Li, X., Wang, A., Wan, W., Luo, X., Zheng, L., He, G., …, & Huang, Q. (2021). High salinity inhibits soil bacterial community mediating nitrogen cycling. Applied and Environmental Microbiology, 87(21), e01366-21. https://doi.org/10.1128/AEM.01366-21
Louden, B. C., Haarmann, D., & Lynne, A. M. (2011). Use of blue agar CAS assay for siderophore detection. Journal of Microbiology & Biology Education, 12(1), 51–53. https://doi.org/10.1128/jmbe.v12i1.249
Mahdi, I., Allaoui, A., Fahsi, N., & Biskri, L. (2022). Bacillus velezensis QA2 potentially induced salt stress tolerance and enhanced phosphate uptake in quinoa plants. Microorganisms, 10(9), 1836. https://doi.org/10.3390/microorganisms10091836
Mahmoud, O. M. B., Hidri, R., Talbi-Zribi, O., Taamalli, W., Abdelly, C., & Djébali, N. (2020). Auxin and proline producing rhizobacteria mitigate salt-induced growth inhibition of barley plants by enhancing water and nutrient status. South African Journal of Botany, 128, 209–217. https://doi.org/10.1016/j.sajb.2019.10.023
Mazhar, S., Pellegrini, E., Contin, M., Bravo, C., & De Nobili, M. (2022). Impacts of salinization caused by sea level rise on the biological processes of coastal soils—A review. Frontiers in Environmental Science, 10, 909415. https://doi.org/10.3389/fenvs.2022.909415
Micci, A., Kingsley, K., Velazquez, F., Chang, X., Kumar, A., & White, J. F. (2024). Cytological observations of intracellular microbes in plants, their roles in sustainable crop production, and effects of elevated carbon dioxide on rhizophagy in roots. Sustainable Agricultural Practices, 345–374. https://doi.org/10.1016/B978-0-443-19150-3.00016-3
Mohandas, A., Sindhu, R., Binod, P., Abraham, A., S. R., A. R., Mathew, A. K., & Pandey, A. (2018). Production of pectinase from Bacillus sonorensis MPTD1. Food Technology and Biotechnology, 56(1), 110–116. https://doi.org/10.17113/ftb.56.01.18.5477
Moon, Y. S., & Ali, S. (2022). Possible mechanisms for the equilibrium of ACC and role of ACC deaminase-producing bacteria. Applied Microbiology and Biotechnology, 106(3), 877–887. https://doi.org/10.1007/s00253-022-11772-x
Nepomuceno, R. A., Brown, C. M. B., Mojica, P. N., & Brown, M. B. (2019). Biological control potential of vesicular arbuscular mycorrhizal root inoculant (VAMRI) and associated phosphate solubilizing bacteria, Pseudochrobactrum asaccharolyticum against soilborne phytopathogens of Onion (Allium cepa L. var. Red Creole). Archives of Phytopathology and Plant Protection, 52(7–8), 714–732. https://doi.org/10.1080/03235408.2019.1644058
Nguyen, P. T., Nguyen, T. T., Bui, D. C., Hong, P. T., Hoang, Q. K., & Nguyen, H. T. (2020). Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications. AIMS Microbiology, 6(4), 451–469. https://doi.org/10.3934/microbiol.2020027
Noman, M., Ahmed, T., Shahid, M., Niazi, M. B. K., Qasim, M., Kouadri, F., ..., & Ali, S. (2021). Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. Ecotoxicology and Environmental Safety, 217, 112264. https://doi.org/10.1016/j.ecoenv.2021.112264
Nutthapornnitchakul, S., Sonjaroon, W., Putthisawong, N., Thumthuan, N., Tasanasuwan, P., & Jantasuriyarat, C. (2024). Effect of drought stress on proline gene expression, enzyme activity, and physiological responses in Thai mulberry (Morus spp.). HAYATI Journal of Biosciences, 31(3), 559–571. https://doi.org/10.4308/hjb.31.3.559-571
Oliva, G., Di Stasio, L., Vigliotta, G., Guarino, F., Cicatelli, A., & Castiglione, S. (2023). Exploring the potential of four novel halotolerant bacterial strains as plant-growth-promoting rhizobacteria (PGPR) under saline conditions. Applied Sciences, 13(7), 4320. https://doi.org/10.3390/app13074320
Paul, S., Parvez, S. S., Goswami, A., & Banik, A. (2024). Exopolysaccharides from agriculturally important microorganisms: Conferring soil nutrient status and plant health. International Journal of Biological Macromolecules, 262, 129954. https://doi.org/10.1016/j.ijbiomac.2024.129954
Powers, E. M. (1995). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Applied and Environmental Microbiology, 61(10), 3756–3758. https://doi.org/10.1128/aem.61.10.3756-3758.1995
Quan, R., Wang, J., Yang, D., Zhang, H., Zhang, Z., & Huang, R. (2017). EIN3 and SOS2 synergistically modulate plant salt tolerance. Scientific Reports, 7, 44637. https://doi.org/10.1038/srep44637
Rahayu, R., Syamsiyah, J., & Dewi, L. (2021). Soil characteristic and shallot growth with gypsum and zeolite amendments in irrigated saline Alfisol and Inceptisol. Journal of Degraded and Mining Lands Management, 8(3), 2801–2808. https://doi.org/10.15243/jdmlm.2021.083.2801
Rahayu, R., Syamsiyah, J., Cahyani, V. R., & Fauziah, S. K. (2019). The effects of biochar and compost on different cultivars of shallots (Allium ascalonicum L.) growth and nutrient uptake in sandy soil under saline water. Sains Tanah, 16(2), 216–228. https://doi.org/10.20961/STJSSA.V16I2.34209
Rahmandhias, D. T., Karyawati, A. S., Hariyono, D., & Maghfoer, M. D. (2024). Effect of plant growth-promoting rhizobacteria (PGPR) on growth and yield of shallots on saline soils. Journal of Degraded and Mining Lands Management, 11(4), 6461–6469. https://doi.org/10.15243/jdmlm.2024.114.6461
Ranawat, B., Mishra, S., & Singh, A. (2021). Enterobacter hormaechei (MF957335) enhanced yield, disease and salinity tolerance in tomato. Archives of Microbiology, 203(5), 2659–2667. https://doi.org/10.1007/s00203-021-02226-5
Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S. C. (2021). Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49–68. https://doi.org/10.1007/s42729-020-00342-7
Rijavec, T., & Lapanje, A. (2016). Hydrogen cyanide in the rhizosphere: Not suppressing plant pathogens, but rather regulating availability of phosphate. Frontiers in Microbiology, 7, 216209. https://doi.org/10.3389/fmicb.2016.01785
Rueda‐Puente, E., Castellanos, T., Troyo‐Diéguez, E., Díaz De León‐Alvarez, J. L., & Murillo‐Amador, B. (2003). Effects of a nitrogen‐fixing indigenous bacterium (Klebsiella pneumoniae) on the growth and development of the halophyte Salicornia bigelovii as a new crop for saline environments. Journal of Agronomy and Crop Science, 189(5), 323–332. https://doi.org/10.1046/j.1439-037X.2003.00051.x
Samain, E., Ernenwein, C., Aussenac, T., & Selim, S. (2022). Effective and durable systemic wheat-induced resistance by a plant-growth-promoting rhizobacteria consortium of Paenibacillus sp. strain B2 and Arthrobacter spp. strain AA against Zymoseptoria tritici and drought stress. Physiological and Molecular Plant Pathology, 119, 101830. https://doi.org/10.1016/j.pmpp.2022.101830
Santiago, C. D., Yagi, S., Ijima, M., Nashimoto, T., Sawada, M., Ikeda, S., Asano, K., Orikasa, Y., & Ohwada, T. (2017). Bacterial compatibility in combined inoculations enhances the growth of potato seedlings. Microbes and Environments, 32(1), 14–23. https://doi.org/10.1264/jsme2.ME16127
Sapre, S., Gontia-Mishra, I., & Tiwari, S. (2022). Plant growth-promoting rhizobacteria ameliorates salinity stress in pea (Pisum sativum). Journal of Plant Growth Regulation, 41(2), 647–656. https://doi.org/10.1007/s00344-021-10329-y
Saud, S., & Wang, L. (2022). Mechanism of cotton resistance to abiotic stress, and recent research advances in the osmoregulation related genes. Frontiers in Plant Science, 13, 972635. https://doi.org/10.3389/fpls.2022.972635
Shekhawat, K., Saad, M. M., Sheikh, A., Mariappan, K., Al‐Mahmoudi, H., Abdulhakim, F., ..., & Hirt, H. (2021). Root endophyte induced plant thermotolerance by constitutive chromatin modification at heat stress memory gene loci. EMBO Reports, 22(3), e51049. https://doi.org/10.15252/embr.202051049
Singh, R. P., Ma, Y., & Shadan, A. (2022). Perspective of ACC-deaminase producing bacteria in stress agriculture. Journal of Biotechnology, 352, 36–46. https://doi.org/10.1016/j.jbiotec.2022.05.002
Slatni, T., Ben Slimene, I., Harzalli, Z., Taamalli, W., Smaoui, A., Abdelly, C., & Elkahoui, S. (2024). Enhancing quinoa (Chenopodium quinoa) growth in saline environments through salt‐tolerant rhizobacteria from halophyte biotope. Physiologia Plantarum, 176(4), e14466. https://doi.org/10.1111/ppl.14466
Solouki, A., Berna-Sicilia, J. Á., Martinez-Alonso, A., Ortiz-Delvasto, N., Bárzana, G., & Carvajal, M. (2023). Onion plants (Allium cepa L.) react differently to salinity levels according to the regulation of aquaporins. Heliyon, 9(3), e13815. https://doi.org/10.1016/j.heliyon.2023.e13815
Su, B., Tu, Z., Yang, Z., Liu, N., Bai, Z., Deng, Z., ..., & Wu, Z. (2024). Enterobacter hormaechei Wu15-loaded biochar enhances the ice plant growth by improving saline soil quality. Plant and Soil, 1–13. https://doi.org/10.1007/s11104-024-07063-1
Suryanti, I. A. P., Purnamasari, M. I., Prihatna, C., Rusmana, I., Wahyudi, A. T., & Suwanto, A. (2024). Characterization of endophytic bacterial isolates from oil palm (Elaeis guineensis) seedlings and ramets for their plant growth promoting potential. Biodiversitas, 25(10), 3775–3788. https://doi.org/10.13057/biodiv/d251040
Syamsiah, J., Rahayu, R., & Binafsihi, W. (2020). Soil properties and shallot yield responses to different salinity levels. Sains Tanah, 17(1), 30–34. https://doi.org/10.20961/stjssa.v17i1.41566
Syamsiyah, J., Rahayu, Herawati, A., & Binafsihi, W. (2020). Study of levels water salinity on the growth of varieties of shallots (Allium ascalonicum L) in Alfisols. IOP Conference Series: Earth and Environmental Science, 423(1), 012065. https://doi.org/10.1088/1755-1315/423/1/012065
Verma, S. K., Sahu, P. K., Kumar, K., Pal, G., Gond, S. K., Kharwar, R. N., & White, J. F. (2021). Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. Journal of Applied Microbiology, 131(5), 2161–2177. https://doi.org/10.1111/jam.15111
Vijay, K., Shibasini, M., Sivasakthivelan, P., & Kavitha, T. (2023). Microbial siderophores as molecular shuttles for metal cations: Sources, sinks and application perspectives. Archives of Microbiology, 205(9), 322. https://doi.org/10.1007/s00203-023-03644-3
Waheed, Z., Iqbal, S., Irfan, M., Jabeen, K., Umar, A., Aljowaie, R. M., Almutairi, S. M., & Gancarz, M. (2024). Pseudochrobactrum asaccharolyticum mitigates arsenic induced oxidative stress of maize plant by enhancing water status and antioxidant defense system. BMC Plant Biology, 24(1), 832. https://doi.org/10.1186/s12870-024-05496-5
Waters, M., Bussell, J., & Jost, R. (2012). Arabidopsis hydroponics and shoot branching assay. Bio-Protocol, 2(19), e264. https://doi.org/10.21769/BioProtoc.264
White, J. F., Chang, X., Kingsley, K. L., Zhang, Q., Chiaranunt, P., Micci, A., ..., & Kowalski, K. P. (2021). Endophytic bacteria in grass crop growth promotion and biostimulation. Grass Research, 1(1), 5. https://doi.org/10.48130/gr-2021-0005
Widawati, S., & Suliasih, S. (2017). The effect of Azotobacter inoculation on shallot plants (Allium cepa) and availability of phosphate in the saline soil. Biodiversitas, 18(1), 86–94. https://doi.org/10.5072/FK2/6VUYXB
Yang, L., Wang, Y., & Yang, K. (2021). Klebsiella variicola improves the antioxidant ability of maize seedlings under saline-alkali stress. PeerJ, 9, e11963. https://doi.org/10.7717/peerj.11963
Yu, D., Miao, Q., Shi, H., Feng, Z., & Feng, W. (2024). Effects of combined application of organic and inorganic fertilizers on physical and chemical properties in saline–alkali soil. Agronomy, 14(10), 2236. https://doi.org/10.3390/agronomy14102236
Yuan, Y., Feng, Z., Yan, S., Zhang, J., Song, H., Zou, Y., & Jin, D. (2025). The effect of the application of chemical fertilizer and arbuscular mycorrhizal fungi on maize yield and soil microbiota in saline agricultural soil. Journal of Fungi, 11(4), 319. https://doi.org/10.3390/jof11040319
Zainab, N., Amna, Din, B. U., Javed, M. T., Afridi, M. S., Mukhtar, T., …, & Chaudhary, H. J. (2020). Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiology and Biochemistry, 152, 90–99. https://doi.org/10.1016/j.plaphy.2020.04.039
Zhang, Q., Kingsley, K. L., & White, J. F. (2022). Endophytic Pseudomonas sp. from Agave palmeri participate in the rhizophagy cycle and act as biostimulants in crop plants. Biology, 11(12), 1790. https://doi.org/10.3390/biology11121790
Zhang, Z., & Huang, R. (2013). Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio-Protocol, 3(14), e817. https://doi.org/10.21769/bioprotoc.817
Zhao, X., Yu, X., Gao, J., Qu, J., Borjigin, Q., Meng, T., & Li, D. (2025). Using Klebsiella sp. and Pseudomonas sp. to study the mechanism of improving maize seedling growth under saline stress. Plants, 14(3), 436. https://doi.org/10.3390/plants14030436
Refbacks
- There are currently no refbacks.