Potential Role of Plant Growth-Promoting Halotolerant Bacteria in Enhancing Shallot Growth under Salinity Stress

Arkan Setiaji, Sulastri Sulastri, Didy Sopandie

Abstract

Soil salinization, driven by seawater intrusion, significantly challenges agricultural productivity in coastal regions. Horticultural crops, such as shallots, are especially sensitive to salinity stress, which impairs growth, nutrient uptake, and bulb yield. This study explored halotolerant plant growth-promoting bacteria from saline soils in East Nusa Tenggara, Indonesia, to reduce salinity stress in shallots. Seventeen bacterial isolates were screened for halotolerance, and eight of them were capable of growing at 1,250 mM NaCl (OD600 ≥ 0.5). Selected halotolerant isolates also exhibited the ability to produce indole-3-acetic acid (IAA) and exopolysaccharides (EPS), solubilize P, K, and Zn, produce siderophores, and exhibit 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity with varying tolerance at salinity levels up to 1,000 mM NaCl. Inoculation with these isolates significantly improved shallot seedling growth under 90 to 230 mM NaCl, with Enterobacter hormaechei demonstrating the best performance. Bacterial inoculation elevated 47 to 64% proline and 15 to 107% NO3 levels in shallot leaves compared to uninoculated plants, contributing to osmotic adjustment and enhanced nutrient assimilation under salt stress in laboratory trials. Single-strain (E. hormaechei) and a consortium of compatible strains (E. hormaechei strain R11 and M119.1, Klebsiella pneumoniae strain A95, K. variicola strain R198, and Pseudochrobactrum asaccharolyticum strain C167.1) inoculation significantly increased shoot dry weight (100% and 69% each) compared to uninoculated plants under salt stress. These findings advance the current understanding of microbial-assisted salinity mitigation and support broader strategies for climate-resilient, sustainable agriculture in saline-prone coastal regions.

Keywords

physiological acclimatization; plant-growth promoting traits; salt-affected soils; salt-tolerant bacteria; sustainable agriculture

Full Text:

PDF

References

Ahmed, A. F., Dahdouh, S. M., Abu-hashim, M., & Merwad, A. R. M. (2025). Integration of organic amendments and phosphate-solubilizing bacteria improves wheat growth and yield by modulating phosphorus availability and physiological reponses. Journal of Plant Nutrition, 48(7), 1144–1165. https://doi.org/10.1080/01904167.2024.2422586

Akhzari, D., Pessarakli, M., Mahdavi, S., & Ariapour, A. (2022). Impact of drought, salinity, and heavy metal stress on growth, nutrient uptake, and physiological traits of vetiver grass (Chrysopogon zizanioides L.). Communications in Soil Science and Plant Analysis, 53(14), 1841–1847. https://doi.org/10.1080/00103624.2022.2063327

Alam, M. A., Rahman, M. A., Rahman, M. M., Hasan, M. M., Naher, S., Fahim, A. H. F., ..., & Hossain, A. (2023). Performance valuation of onion (Allium cepa L.) genotypes under different levels of salinity for the development of cultivars suitable for saline regions. Frontiers in Plant Science, 14, 1154051. https://doi.org/10.3389/fpls.2023.1154051

Andrés, C. M. C., Pérez de la Lastra, J. M., Andrés Juan, C., Plou, F. J., & Pérez-Lebeña, E. (2023). Superoxide anion chemistry—Its role at the core of the innate immunity. International Journal of Molecular Sciences, 24(3), 1841. https://doi.org/10.3390/ijms24031841

Andrés-Barrao, C., Alzubaidy, H., Jalal, R., Mariappan, K. G., de Zélicourt, A., Bokhari, A., ..., & Hirt, H. (2021). Coordinated bacterial and plant sulfur metabolism in Enterobacter sp. SA187–induced plant salt stress tolerance. Proceedings of the National Academy of Sciences, 118(46), e2107417118. https://doi.org/10.1073/pnas.2107417118

Anwar, N. H. A., Karyawati, A. S., Maghfoer, Moch. D., & Kurniawan, A. (2024). Organic fertilizer alleviates salt stress in shallot by modulating plant physiological responses. Journal of Ecological Engineering, 25(7), 286–294. https://doi.org/10.12911/22998993/188880

Armanisa, K., Rusmana, I., & Astuti, R. I. (2024). Diversity of rhizospheric bacterial community from kaolin mining site and their potential as plant growth promoting bacteria. HAYATI Journal of Biosciences, 32(1), 212–222. https://doi.org/10.4308/hjb.32.1.212-222

Atouei, M. T., Pourbabaee, A. A., & Shorafa, M. (2019). Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria. Iranian Journal of Science and Technology, Transactions A: Science, 43(5), 2725–2733. https://doi.org/10.1007/s40995-019-00753-x

Bakka, K., Gopika, P. V., Sreelakshmi, H., & Challabathula, D. (2022). Halotolerant plant growth promoting rhizobacteria: A futuristic direction to salt stress tolerance. Plant Stress: Challenges and Management in the New Decade (pp. 277–293). Springer International Publishing. https://doi.org/10.1007/978-3-030-95365-2_17

Baldani, J. I., Reis, V. M., Videira, S. S., Boddey, L. H., & Baldani, V. L. D. (2014). The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: A practical guide for microbiologists. Plant and Soil, 384(1–2), 413–431. https://doi.org/10.1007/s11104-014-2186-6

Bao, X. G., Chong, P. F., He, C., Lu, X. M., Wang, X. Y., Zhang, F., ..., & Gao, L. L. (2025). Enterobacter-inoculation altered the C, N contents and regulated biomass allocation in Reaumuria soongorica to promote plant growth and improve salt stress tolerance. Frontiers in Plant Science, 15, 1502659. https://doi.org/10.3389/fpls.2024.1502659

Beitsayahi, F., Enayatizamir, N., Nejadsadeghi, L., & Nasernakhaei, F. (2025). Plant growth‐promoting bacteria associated with some salt‐tolerant plants. Journal of Basic Microbiology, 65(2), e2400446. https://doi.org/10.1002/jobm.202400446

Bhagat, N., Raghav, M., Dubey, S., & Bedi, N. (2021). Bacterial exopolysaccharides: Insight into their role in plant abiotic stress tolerance. Journal of Microbiology and Biotechnology, 31(8), 1045–1059. https://doi.org/10.4014/jmb.2105.05009

Bharti, N., Yadav, D., Barnawal, D., Maji, D., & Kalra, A. (2013). Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World Journal of Microbiology and Biotechnology, 29(2), 379–387. https://doi.org/10.1007/s11274-012-1192-1

Boubekri, K., Soumare, A., Mardad, I., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., & Kouisni, L. (2021). The screening of potassium- and phosphate-solubilizing Actinobacteria and the assessment of their ability to promote wheat growth parameters. Microorganisms, 9(3), 470. https://doi.org/10.3390/microorganisms9030470

Chang, X., Kingsley, K., & White, J. F. (2021). Chemical interactions at the interface of plant root hair cells and intracellular bacteria. Microorganisms, 9(5), 1041. https://doi.org/10.3390/microorganisms9051041

Choudhury, A. R., Trivedi, P., Choi, J., Madhaiyan, M., Park, J., Choi, W., ..., & Sa, T. (2023). Inoculation of ACC deaminase-producing endophytic bacteria down-regulates ethylene-induced pathogenesis related signaling in red pepper (Capsicum annuum L.) under salt stress. Physiologia Plantarum, 175(2), e13909. https://doi.org/10.1111/ppl.13909

Chrysargyris, A., Höfte, M., Tzortzakis, N., Petropoulos, S. A., & Di Gioia, F. (2022). Editorial: Micronutrients: The borderline between their beneficial role and toxicity in plants. Frontiers in Plant Science, 13, 840624. https://doi.org/10.3389/fpls.2022.840624

DeGarmo, E. P., Sullivan, W. G., & Canada, J. R. (1984). Engineering Economy. Macmillan Publishers.

Dubey, R. S., Srivastava, R. K., & Pessarakli, M. (2021). Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. Handbook of Plant and Crop Physiology (p. 38). CRC Press. https://doi.org/10.1201/9781003093640

Duca, D. R., & Glick, B. R. (2020). Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Applied Microbiology and Biotechnology, 104(20), 8607–8619. https://doi.org/10.1007/s00253-020-10869-5

Fu, B., & Yan, Q. (2023). Exopolysaccharide is required for motility, stress tolerance, and plant colonization by the endophytic bacterium Paraburkholderia phytofirmans PsJN. Frontiers in Microbiology, 14, 1218653. https://doi.org/10.3389/fmicb.2023.1218653

Fu, M., Liu, L., Fu, B., Hou, M., Xiao, Y., Liu, Y., ..., & Lu, Q. (2025). Effects of salt stress on plant and rhizosphere bacterial communities, interaction patterns, and functions. Frontiers in Plant Science, 15, 1516336. https://doi.org/10.3389/fpls.2024.1516336

Garipova, S. R., Markova, O. V., Fedorova, K. A., Dedova, M. A., Iksanova, M. A., Kamaletdinova, A. A., ..., & Pusenkova, L. I. (2022). Malondialdehyde and proline content in bean cultivars following the inoculation with endophytic bacteria. Acta Physiologiae Plantarum, 44(9), 89. https://doi.org/10.1007/s11738-022-03427-1

Ghazi, A., Atia, E., & Elsakhawy, T. (2021). Evaluation of an endophytic plant growth-promoting bacterium, Klebsiella variicola, in mitigation of salt stress in tuberose (Polianthes tuberosa L.). The Journal of Horticultural Science and Biotechnology, 96(6), 770–782. https://doi.org/10.1080/14620316.2021.1926343

Girma, B., Panda, A. N., Roy, P. C., Ray, L., Mohanty, S., & Chowdhary, G. (2022). Molecular, biochemical, and comparative genome analysis of a rhizobacterial strain Klebsiella sp. KBG6.2 imparting salt stress tolerance to Oryza sativa L. Environmental and Experimental Botany, 203, 105066. https://doi.org/10.1016/j.envexpbot.2022.105066

Hachiya, T., & Okamoto, Y. (2017). Simple spectroscopic determination of nitrate, nitrite, and ammonium in Arabidopsis thaliana. Bio-Protocol, 7(10), 1–13. https://doi.org/10.21769/bioprotoc.2280

Hasanuzzaman, M., & Fujita, M. (2022). Plant responses and tolerance to salt stress: Physiological and molecular interventions. International Journal of Molecular Sciences, 23(9), 4810. https://doi.org/10.3390/ijms23094810

He, R., Liu, Y., Song, C., Feng, G., & Song, J. (2024). Osmotic regulation beyond nitrate nutrients in plant resistance to stress: A review. Plant Growth Regulation, 103(1), 1–8. https://doi.org/10.1007/s10725-023-01093-y

Henriquez, T., Wirtz, L., Su, D., & Jung, H. (2021). Prokaryotic solute/sodium symporters: Versatile functions and mechanisms of a transporter family. International Journal of Molecular Sciences, 22(4), 1880. https://doi.org/10.3390/ijms22041880

Hosseini, Z., Zare-bavani, M. R., & Zare, A. (2021). The effect of salt stress on yield and accumulation of some minerals in two salt-tolerant and susceptible onion cultivars. Desert, 26(2), 157–171. https://doi.org/10.22059/jdesert.2020.287087.1006744

Hussain, S., Hafeez, M. B., Azam, R., Mehmood, K., Aziz, M., Ercisli, S., ..., & Ren, X. (2024). Deciphering the role of phytohormones and osmolytes in plant tolerance against salt stress: Implications, possible cross-talk, and prospects. Journal of Plant Growth Regulation, 43(1), 38–59. https://doi.org/10.1007/s00344-023-11070-4

Ilyas, N., Mumtaz, K., Akhtar, N., Yasmin, H., Sayyed, R. Z., Khan, W., ..., & Ali, Z. (2020). Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability, 12(21), 8876. https://doi.org/10.3390/su12218876

Javed, S., Azhar, S., Farid, A., Gull, M., Mazhar, M. W., Haider, Z., ..., & Naeem, M. (2023). Impact of rhizospheric, nodulation and soil microbiome on soybean and rice growth for sustainable agriculture. Agricultural Sciences Journal, 5(3), 67–83. https://doi.org/10.56520/asj.v5i3.352

Kanekar, P. P., & Kanekar, S. P. (2022). Halophilic and halotolerant microorganisms. Diversity and Biotechnology of Extremophilic Microorganisms from India (pp. 13–69). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1573-4_2

Kang, S. M., Radhakrishnan, R., Lee, S. M., Park, Y. G., Kim, A. Y., Seo, C. W., & Lee, I. J. (2015). Enterobacter sp. SE992-induced regulation of amino acids, sugars, and hormones in cucumber plants improves salt tolerance. Acta Physiologiae Plantarum, 37(8), 1–10. https://doi.org/10.1007/s11738-015-1895-7

Kaushal, M. (2020). Insights into microbially induced salt tolerance and endurance mechanisms (STEM) in plants. Frontiers in Microbiology, 11, 1518. https://doi.org/10.3389/fmicb.2020.01518

Kechid, M., Desbrosses, G., Rokhsi, W., Varoquaux, F., Djekoun, A., & Touraine, B. (2013). The NRT 2.5 and NRT 2.6 genes are involved in growth promotion of Arabidopsis by the plant growth‐promoting rhizobacterium (PGPR) strain Phyllobacterium brassicacearum STM 196. New Phytologist, 198(2), 514–524. https://doi.org/10.1111/nph.12158

Khan, S., Sehar, Z., Nidhi, Albaqami, M., & Khan, N. A. (2023). Ethylene crosstalk with isoprenoid-derived signaling molecules in the context of salinity tolerance. Environmental and Experimental Botany, 212, 105379. https://doi.org/10.1016/j.envexpbot.2023.105379

Kognou, A. L. M., Chio, C., Khatiwada, J. R., Shrestha, S., Chen, X., Han, S., ..., & Qin, W. (2022). Characterization of cellulose-degrading bacteria isolated from soil and the optimization of their culture conditions for cellulase production. Applied Biochemistry and Biotechnology, 194(11), 5060–5082. https://doi.org/10.1007/s12010-022-04002-7

Kraamwinkel, C. T., Beaulieu, A., Dias, T., & Howison, R. A. (2021). Planetary limits to soil degradation. Communications Earth & Environment, 2(1), 249. https://doi.org/10.1038/s43247-021-00323-3

Kusale, S. P., Attar, Y. C., Sayyed, R. Z., Malek, R. A., Ilyas, N., Suriani, N. L., ..., & El Enshasy, H. A. (2021). Production of plant beneficial and antioxidants metabolites by Klebsiella variicola under salinity stress. Molecules, 26(7), 1894. https://doi.org/10.3390/molecules26071894

Lee, S., Trịnh, C. S., Lee, W. J., Jeong, C. Y., Truong, H. A., Chung, N., ..., & Lee, H. (2020). Bacillus subtilis strain L1 promotes nitrate reductase activity in Arabidopsis and elicits enhanced growth performance in Arabidopsis, lettuce, and wheat. Journal of Plant Research, 133(2), 231–244. https://doi.org/10.1007/s10265-019-01160-4

Lee, Y. S., Umam, K., Kuo, T. F., Yang, Y. L., Feng, C. S., & Yang, W. C. (2024). Functional and mechanistic studies of a phytogenic formulation, Shrimp Best, in growth performance and vibriosis in whiteleg shrimp. Scientific Reports, 14(1), 11584. https://doi.org/10.1038/s41598-024-62436-x

Li, X., Wang, A., Wan, W., Luo, X., Zheng, L., He, G., …, & Huang, Q. (2021). High salinity inhibits soil bacterial community mediating nitrogen cycling. Applied and Environmental Microbiology, 87(21), e01366-21. https://doi.org/10.1128/AEM.01366-21

Louden, B. C., Haarmann, D., & Lynne, A. M. (2011). Use of blue agar CAS assay for siderophore detection. Journal of Microbiology & Biology Education, 12(1), 51–53. https://doi.org/10.1128/jmbe.v12i1.249

Mahdi, I., Allaoui, A., Fahsi, N., & Biskri, L. (2022). Bacillus velezensis QA2 potentially induced salt stress tolerance and enhanced phosphate uptake in quinoa plants. Microorganisms, 10(9), 1836. https://doi.org/10.3390/microorganisms10091836

Mahmoud, O. M. B., Hidri, R., Talbi-Zribi, O., Taamalli, W., Abdelly, C., & Djébali, N. (2020). Auxin and proline producing rhizobacteria mitigate salt-induced growth inhibition of barley plants by enhancing water and nutrient status. South African Journal of Botany, 128, 209–217. https://doi.org/10.1016/j.sajb.2019.10.023

Mazhar, S., Pellegrini, E., Contin, M., Bravo, C., & De Nobili, M. (2022). Impacts of salinization caused by sea level rise on the biological processes of coastal soils—A review. Frontiers in Environmental Science, 10, 909415. https://doi.org/10.3389/fenvs.2022.909415

Micci, A., Kingsley, K., Velazquez, F., Chang, X., Kumar, A., & White, J. F. (2024). Cytological observations of intracellular microbes in plants, their roles in sustainable crop production, and effects of elevated carbon dioxide on rhizophagy in roots. Sustainable Agricultural Practices, 345–374. https://doi.org/10.1016/B978-0-443-19150-3.00016-3

Mohandas, A., Sindhu, R., Binod, P., Abraham, A., S. R., A. R., Mathew, A. K., & Pandey, A. (2018). Production of pectinase from Bacillus sonorensis MPTD1. Food Technology and Biotechnology, 56(1), 110–116. https://doi.org/10.17113/ftb.56.01.18.5477

Moon, Y. S., & Ali, S. (2022). Possible mechanisms for the equilibrium of ACC and role of ACC deaminase-producing bacteria. Applied Microbiology and Biotechnology, 106(3), 877–887. https://doi.org/10.1007/s00253-022-11772-x

Nepomuceno, R. A., Brown, C. M. B., Mojica, P. N., & Brown, M. B. (2019). Biological control potential of vesicular arbuscular mycorrhizal root inoculant (VAMRI) and associated phosphate solubilizing bacteria, Pseudochrobactrum asaccharolyticum against soilborne phytopathogens of Onion (Allium cepa L. var. Red Creole). Archives of Phytopathology and Plant Protection, 52(7–8), 714–732. https://doi.org/10.1080/03235408.2019.1644058

Nguyen, P. T., Nguyen, T. T., Bui, D. C., Hong, P. T., Hoang, Q. K., & Nguyen, H. T. (2020). Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications. AIMS Microbiology, 6(4), 451–469. https://doi.org/10.3934/microbiol.2020027

Noman, M., Ahmed, T., Shahid, M., Niazi, M. B. K., Qasim, M., Kouadri, F., ..., & Ali, S. (2021). Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. Ecotoxicology and Environmental Safety, 217, 112264. https://doi.org/10.1016/j.ecoenv.2021.112264

Nutthapornnitchakul, S., Sonjaroon, W., Putthisawong, N., Thumthuan, N., Tasanasuwan, P., & Jantasuriyarat, C. (2024). Effect of drought stress on proline gene expression, enzyme activity, and physiological responses in Thai mulberry (Morus spp.). HAYATI Journal of Biosciences, 31(3), 559–571. https://doi.org/10.4308/hjb.31.3.559-571

Oliva, G., Di Stasio, L., Vigliotta, G., Guarino, F., Cicatelli, A., & Castiglione, S. (2023). Exploring the potential of four novel halotolerant bacterial strains as plant-growth-promoting rhizobacteria (PGPR) under saline conditions. Applied Sciences, 13(7), 4320. https://doi.org/10.3390/app13074320

Paul, S., Parvez, S. S., Goswami, A., & Banik, A. (2024). Exopolysaccharides from agriculturally important microorganisms: Conferring soil nutrient status and plant health. International Journal of Biological Macromolecules, 262, 129954. https://doi.org/10.1016/j.ijbiomac.2024.129954

Powers, E. M. (1995). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Applied and Environmental Microbiology, 61(10), 3756–3758. https://doi.org/10.1128/aem.61.10.3756-3758.1995

Quan, R., Wang, J., Yang, D., Zhang, H., Zhang, Z., & Huang, R. (2017). EIN3 and SOS2 synergistically modulate plant salt tolerance. Scientific Reports, 7, 44637. https://doi.org/10.1038/srep44637

Rahayu, R., Syamsiyah, J., & Dewi, L. (2021). Soil characteristic and shallot growth with gypsum and zeolite amendments in irrigated saline Alfisol and Inceptisol. Journal of Degraded and Mining Lands Management, 8(3), 2801–2808. https://doi.org/10.15243/jdmlm.2021.083.2801

Rahayu, R., Syamsiyah, J., Cahyani, V. R., & Fauziah, S. K. (2019). The effects of biochar and compost on different cultivars of shallots (Allium ascalonicum L.) growth and nutrient uptake in sandy soil under saline water. Sains Tanah, 16(2), 216–228. https://doi.org/10.20961/STJSSA.V16I2.34209

Rahmandhias, D. T., Karyawati, A. S., Hariyono, D., & Maghfoer, M. D. (2024). Effect of plant growth-promoting rhizobacteria (PGPR) on growth and yield of shallots on saline soils. Journal of Degraded and Mining Lands Management, 11(4), 6461–6469. https://doi.org/10.15243/jdmlm.2024.114.6461

Ranawat, B., Mishra, S., & Singh, A. (2021). Enterobacter hormaechei (MF957335) enhanced yield, disease and salinity tolerance in tomato. Archives of Microbiology, 203(5), 2659–2667. https://doi.org/10.1007/s00203-021-02226-5

Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S. C. (2021). Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49–68. https://doi.org/10.1007/s42729-020-00342-7

Rijavec, T., & Lapanje, A. (2016). Hydrogen cyanide in the rhizosphere: Not suppressing plant pathogens, but rather regulating availability of phosphate. Frontiers in Microbiology, 7, 216209. https://doi.org/10.3389/fmicb.2016.01785

Rueda‐Puente, E., Castellanos, T., Troyo‐Diéguez, E., Díaz De León‐Alvarez, J. L., & Murillo‐Amador, B. (2003). Effects of a nitrogen‐fixing indigenous bacterium (Klebsiella pneumoniae) on the growth and development of the halophyte Salicornia bigelovii as a new crop for saline environments. Journal of Agronomy and Crop Science, 189(5), 323–332. https://doi.org/10.1046/j.1439-037X.2003.00051.x

Samain, E., Ernenwein, C., Aussenac, T., & Selim, S. (2022). Effective and durable systemic wheat-induced resistance by a plant-growth-promoting rhizobacteria consortium of Paenibacillus sp. strain B2 and Arthrobacter spp. strain AA against Zymoseptoria tritici and drought stress. Physiological and Molecular Plant Pathology, 119, 101830. https://doi.org/10.1016/j.pmpp.2022.101830

Santiago, C. D., Yagi, S., Ijima, M., Nashimoto, T., Sawada, M., Ikeda, S., Asano, K., Orikasa, Y., & Ohwada, T. (2017). Bacterial compatibility in combined inoculations enhances the growth of potato seedlings. Microbes and Environments, 32(1), 14–23. https://doi.org/10.1264/jsme2.ME16127

Sapre, S., Gontia-Mishra, I., & Tiwari, S. (2022). Plant growth-promoting rhizobacteria ameliorates salinity stress in pea (Pisum sativum). Journal of Plant Growth Regulation, 41(2), 647–656. https://doi.org/10.1007/s00344-021-10329-y

Saud, S., & Wang, L. (2022). Mechanism of cotton resistance to abiotic stress, and recent research advances in the osmoregulation related genes. Frontiers in Plant Science, 13, 972635. https://doi.org/10.3389/fpls.2022.972635

Shekhawat, K., Saad, M. M., Sheikh, A., Mariappan, K., Al‐Mahmoudi, H., Abdulhakim, F., ..., & Hirt, H. (2021). Root endophyte induced plant thermotolerance by constitutive chromatin modification at heat stress memory gene loci. EMBO Reports, 22(3), e51049. https://doi.org/10.15252/embr.202051049

Singh, R. P., Ma, Y., & Shadan, A. (2022). Perspective of ACC-deaminase producing bacteria in stress agriculture. Journal of Biotechnology, 352, 36–46. https://doi.org/10.1016/j.jbiotec.2022.05.002

Slatni, T., Ben Slimene, I., Harzalli, Z., Taamalli, W., Smaoui, A., Abdelly, C., & Elkahoui, S. (2024). Enhancing quinoa (Chenopodium quinoa) growth in saline environments through salt‐tolerant rhizobacteria from halophyte biotope. Physiologia Plantarum, 176(4), e14466. https://doi.org/10.1111/ppl.14466

Solouki, A., Berna-Sicilia, J. Á., Martinez-Alonso, A., Ortiz-Delvasto, N., Bárzana, G., & Carvajal, M. (2023). Onion plants (Allium cepa L.) react differently to salinity levels according to the regulation of aquaporins. Heliyon, 9(3), e13815. https://doi.org/10.1016/j.heliyon.2023.e13815

Su, B., Tu, Z., Yang, Z., Liu, N., Bai, Z., Deng, Z., ..., & Wu, Z. (2024). Enterobacter hormaechei Wu15-loaded biochar enhances the ice plant growth by improving saline soil quality. Plant and Soil, 1–13. https://doi.org/10.1007/s11104-024-07063-1

Suryanti, I. A. P., Purnamasari, M. I., Prihatna, C., Rusmana, I., Wahyudi, A. T., & Suwanto, A. (2024). Characterization of endophytic bacterial isolates from oil palm (Elaeis guineensis) seedlings and ramets for their plant growth promoting potential. Biodiversitas, 25(10), 3775–3788. https://doi.org/10.13057/biodiv/d251040

Syamsiah, J., Rahayu, R., & Binafsihi, W. (2020). Soil properties and shallot yield responses to different salinity levels. Sains Tanah, 17(1), 30–34. https://doi.org/10.20961/stjssa.v17i1.41566

Syamsiyah, J., Rahayu, Herawati, A., & Binafsihi, W. (2020). Study of levels water salinity on the growth of varieties of shallots (Allium ascalonicum L) in Alfisols. IOP Conference Series: Earth and Environmental Science, 423(1), 012065. https://doi.org/10.1088/1755-1315/423/1/012065

Verma, S. K., Sahu, P. K., Kumar, K., Pal, G., Gond, S. K., Kharwar, R. N., & White, J. F. (2021). Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. Journal of Applied Microbiology, 131(5), 2161–2177. https://doi.org/10.1111/jam.15111

Vijay, K., Shibasini, M., Sivasakthivelan, P., & Kavitha, T. (2023). Microbial siderophores as molecular shuttles for metal cations: Sources, sinks and application perspectives. Archives of Microbiology, 205(9), 322. https://doi.org/10.1007/s00203-023-03644-3

Waheed, Z., Iqbal, S., Irfan, M., Jabeen, K., Umar, A., Aljowaie, R. M., Almutairi, S. M., & Gancarz, M. (2024). Pseudochrobactrum asaccharolyticum mitigates arsenic induced oxidative stress of maize plant by enhancing water status and antioxidant defense system. BMC Plant Biology, 24(1), 832. https://doi.org/10.1186/s12870-024-05496-5

Waters, M., Bussell, J., & Jost, R. (2012). Arabidopsis hydroponics and shoot branching assay. Bio-Protocol, 2(19), e264. https://doi.org/10.21769/BioProtoc.264

White, J. F., Chang, X., Kingsley, K. L., Zhang, Q., Chiaranunt, P., Micci, A., ..., & Kowalski, K. P. (2021). Endophytic bacteria in grass crop growth promotion and biostimulation. Grass Research, 1(1), 5. https://doi.org/10.48130/gr-2021-0005

Widawati, S., & Suliasih, S. (2017). The effect of Azotobacter inoculation on shallot plants (Allium cepa) and availability of phosphate in the saline soil. Biodiversitas, 18(1), 86–94. https://doi.org/10.5072/FK2/6VUYXB

Yang, L., Wang, Y., & Yang, K. (2021). Klebsiella variicola improves the antioxidant ability of maize seedlings under saline-alkali stress. PeerJ, 9, e11963. https://doi.org/10.7717/peerj.11963

Yu, D., Miao, Q., Shi, H., Feng, Z., & Feng, W. (2024). Effects of combined application of organic and inorganic fertilizers on physical and chemical properties in saline–alkali soil. Agronomy, 14(10), 2236. https://doi.org/10.3390/agronomy14102236

Yuan, Y., Feng, Z., Yan, S., Zhang, J., Song, H., Zou, Y., & Jin, D. (2025). The effect of the application of chemical fertilizer and arbuscular mycorrhizal fungi on maize yield and soil microbiota in saline agricultural soil. Journal of Fungi, 11(4), 319. https://doi.org/10.3390/jof11040319

Zainab, N., Amna, Din, B. U., Javed, M. T., Afridi, M. S., Mukhtar, T., …, & Chaudhary, H. J. (2020). Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiology and Biochemistry, 152, 90–99. https://doi.org/10.1016/j.plaphy.2020.04.039

Zhang, Q., Kingsley, K. L., & White, J. F. (2022). Endophytic Pseudomonas sp. from Agave palmeri participate in the rhizophagy cycle and act as biostimulants in crop plants. Biology, 11(12), 1790. https://doi.org/10.3390/biology11121790

Zhang, Z., & Huang, R. (2013). Analysis of malondialdehyde, chlorophyll proline, soluble sugar, and glutathione content in Arabidopsis seedling. Bio-Protocol, 3(14), e817. https://doi.org/10.21769/bioprotoc.817

Zhao, X., Yu, X., Gao, J., Qu, J., Borjigin, Q., Meng, T., & Li, D. (2025). Using Klebsiella sp. and Pseudomonas sp. to study the mechanism of improving maize seedling growth under saline stress. Plants, 14(3), 436. https://doi.org/10.3390/plants14030436

Refbacks

  • There are currently no refbacks.