Morpho-Agronomic Characterization and Yield Evaluation of Doubled Haploid Eggplant (Solanum melongena L.) Lines Derived from Anther Culture

Reynatha Syafira Rizkiya, Bambang Sapta Purwoko, Awang Maharijaya, Iswari Saraswati Dewi

Abstract

The improvement of eggplant yield through breeding is crucial. Doubled haploid technology has accelerated the development of varieties. This study utilized doubled haploid anther culture-derived lines (confirmed through flow cytometry and morphology) developed from embryos from a previous study to evaluate the morpho-agronomic performance and yield of doubled haploid eggplant lines. The experiment used a randomized complete block design (RCBD), three replications, and one factor, namely genotype (35 doubled haploid lines, three F1 varieties). Observation was made on plant height, dichotomous height, stem diameter, days to flowering and harvesting, fruit length, fruit diameter, weight per fruit, number of fruits, and fruit yield per plant. The data were analyzed using ANOVA, t-Dunnett, Tukey-Kramer at a 5% level, Pearson correlation coefficient, and selection index. The results showed significant variability in the population of doubled haploid lines. Fruit yield was positively correlated with plant height, dichotomous height, stem diameter, days to flowering, fruit length, and weight per fruit, but negatively correlated with the number of fruits per plant. These variables can be used as selection criteria because of their high heritability and genotypic coefficients of variation. The selection index revealed that the high-yielding doubled haploid lines with desirable morpho-agronomic traits were RS-P2, RS-P6, RS-P9, RS-P14, RS-P18, RS-H19, RS-H20, RS-H23, RS-H27, RS-H3, RS-M31, RS-M32, RS-M33, RS-M34, and RS-M37. The selected lines with high yield and good quality fruit, similar to the commercial hybrid parent, were Hitavi’s derived lines. All selected lines serve as the genetic basis for production improvements and long-term breeding programs for sustainable and productive eggplants that benefit farmers.

Keywords

fruit yield; haploid; heritability; pure lines; variability

Full Text:

PDF

References

Al-Ashkar, I., Alderfasi, A., El-Hendawy, S., Al-Suhaibani, N., El-Kafafi, S., & Seleiman, M. F. (2019). Detecting salt tolerance in doubled haploid wheat lines. Agronomy, 9(4), 211. https://doi.org/10.3390/agronomy9040211

Alsabah, R., Purwoko, B. S., Dewi, I. S., & Wahyu, Y. (2019). Selection index for selecting promising doubled haploid lines of black rice. SABRAO Journal of Breeding and Genetics, 51(4), 430–441. Retrieved from https://sabraojournal.org/wp-content/uploads/2020/01/SABRAO-J-Breed-Genet-514-430-441-Purwoko.pdf

Burton, G. W., & DeVane, E. H. (1953). Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agronomy Journal, 45(10), 478–481. https://doi.org/10.2134/agronj1953.00021962004500100005x

Chaikam, V., Molenaar, W., Melchinger, A. E., & Boddupalli, P. M. (2019). Doubled haploid technology for line development in maize: Technical advances and prospects. Theoretical and Applied Genetics, 132(12), 3227–3243. https://doi.org/10.1007/s00122-019-03433-x

Chen, Y. R., Lübberstedt, T., & Frei, U. K. (2023). Development of doubled haploid inducer lines facilitates selection of superior haploid inducers in maize. Frontiers in Plant Science, 14, 1320660. https://doi.org/10.3389/fpls.2023.1320660

Damnjanović, J., Girek, Z., Milojević, J., Zečević, V., Živanović, T., Ugrinović, M., & Pavlović, S. (2022). Assessment of eggplant (Solanum melongena L.) genotypes and selection of parameters for better yield. Chemistry Proceedings, 10(1), 31. https://doi.org/10.3390/iocag2022-12309

Dwivedi, S. L., Heslop-Harrison, P., Amas, J., Ortiz, R., & Edwards, D. (2024). Epistasis and pleiotropy-induced variation for plant breeding. Plant Biotechnology Journal, 22(10), 2788–2807. https://doi.org/10.1111/pbi.14405

Dwivedi, S. L., Reynolds, M. P., & Ortiz, R. (2021). Mitigating trade-offs in plant breeding. ISCIENCE, 24(9), 102965. https://doi.org/10.1016/j.isci.2021.102965

Eliby, S., Bekkuzhina, S., Kishchenko, O., Iskakova, G., Kylyshbayeva, G., Jatayev, S., … & Shavrukov, Y. (2022). Developments and prospects for doubled haploid wheat. Biotechnology Advances, 60, 108007. https://doi.org/10.1016/j.biotechadv.2022.108007

Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Essex, UK: Longmans Green.

FAOSTAT. (2022). FAOSTAT Database Collection. Food and Agriculture Organization Statistics. Retrieved from https://www.fao.org/faostat/en/#data/QCL

FAOSTAT. (2023). FAOSTAT Database Collection. Food and Agriculture Organization Statistics. Retrieved from https://www.fao.org/faostat/en/#data/QCL

Faysal, A. S. M., Ali, L., Azam, M. G., Sarker, U., Ercisli, S., Golokhvast, K. S., & Marc, R. A. (2022). Genetic variability, character association, and path coefficient analysis in Transplant Aman rice genotypes. Plants, 11(21), 2952. https://doi.org/10.3390/plants11212952

Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). Canada, US: John Wiley & Sons. Retrieved from https://scholar.google.co.id/scholar?cites=14957946235125646981&as_sdt=2005&sciodt=0,5&hl=id&authuser=3

Gramazio, P., Alonso, D., Arrones, A., Villanueva, G., Plazas, M., Toppino, L., … & Prohens, J. (2023). Conventional and new genetic resources for an eggplant breeding revolution. Journal of Experimental Botany, 74(20), 6285–6305. https://doi.org/10.1093/jxb/erad260

Gurung, J., Limbu, S., & Sharma, L. (2018). Effects of spacing and planting time on growth and fruit yield of Solanum aethiopicum. The Pharma Innovation Journal, 7(4), 836–839. Retrieved from https://www.thepharmajournal.com/archives/2018/vol7issue4/PartN/7-4-70-218.pdf

Hale, B., Ferrie, A. M. R., Chellamma, S., Samuel, J. P., & Phillips, G. C. (2022). Androgenesis-based doubled haploidy: Past, present, and future perspectives. Frontiers in Plant Science, 12, 751230. https://doi.org/10.3389/fpls.2021.751230

Hooghvorst, I., & Nogués, S. (2021). Chromosome doubling methods in doubled haploid and haploid inducer-mediated genome-editing systems in major crops. Plant Cell Reports, 40, 255–270. https://doi.org/10.1007/s00299-020-02605-0

IBPGR. (1990). Descriptors for eggplant. Rome, Italy: International Board for Plant Genetic Resources. Retrieved from https://hdl.handle.net/10568/72874

Kumar, D., Gurjar, N. S., Singh, P., Kumar, V., Tiwari, B., Kumar, A., … & Pandey, A. (2024). To study correlation between yield and its components in eggplant (Solanum melongena L.). Journal of Experimental Agriculture International, 46(7), 739–753. https://doi.org/10.9734/jeai/2024/v46i72627

Kyum, M., Kaur, H., Kamboj, A., Goyal, L., & Bhatia, D. (2022). Strategies and prospects of haploid induction in rice (Oryza sativa). Plant Breeding, 141(1), 1–11. https://doi.org/10.1111/pbr.12971

Lenaerts, B., Collard, B. C. Y., & Demont, M. (2019). Review: Improving global food security through accelerated plant breeding. Plant Science, 287, 11027. https://doi.org/10.1016/j.plantsci.2019.110207

Lestari, P., Syukur, M., Trikoesoemaningtyas, & Widiyono, W. (2023). Genetic variability and path analysis of chili (Capsicum annuum L.) associated characters under drought stress from vegetative to generative phases. Biodiversitas, 24(4), 2315–2323. https://doi.org/10.13057/biodiv/d240445

Mathan, J., Singh, A., & Ranjan, A. (2021). Sucrose transport and metabolism control carbon partitioning between stem and grain in rice. Journal of Experimental Botany, 72(12), 4355–4372. https://doi.org/10.1093/jxb/erab066

Meng, D., Liu, C., Chen, S., & Jin, W. (2021). Haploid induction and its application in maize breeding. Molecular Breeding, 41(3), 20. https://doi.org/10.1007/s11032-021-01204-5

Ministry of Agriculture. (2009). Standar operasional prosedur (SOP) budidaya terung. Jakarta, Indonesia: Department of Agriculture, Directorate General of Horticulture, Directorate of Vegetable Crops and Biopharmaceuticals. Retrieved from https://ppid.pertanian.go.id/doc/1/Budidaya/Budidaya%20Terung.pdf

Ministry of Agriculture. (2023). Statistics of food consumption 2023. Jakarta, Indonesia: Ministry of Agriculture of Indonesia. Retrieved from https://satudata.pertanian.go.id/assets/docs/publikasi/Buku_Statsitik_Konsumsi_Pangan_2023.pdf

Mir, R., Calabuig-Serna, A., & Seguí-Simarro, J. M. (2021). Doubled haploids in eggplant. Biology, 10(7), 685. https://doi.org/10.3390/biology10070685

Mulyana, A., Purwoko, B., Dewi, I., & Maharijaya, S. (2023). Comparison of six anther culture methods for the production of doubled haploids in eggplant (Solanum melongena L.). Euphytica, 219(4), 44. https://doi.org/10.1007/s10681-023-03171-8

Nuraeni, E., Wahyu, Y., & Trikoesoemaningtyas. (2021). Selection of wheat (Triticum aestivum) lines for the high altitude of Indonesia based on single-and multi-character adaptation. Biodiversitas, 22(12), 5530–5535. https://doi.org/10.13057/biodiv/d221236

Nurhidayah, S., Purwoko, B. S., Dewi, I. S., Suwarno, W. B., Lubis, I., & Yuriyah, S. (2024). Resistance of doubled haploid rice lines with green super rice characters to bacterial leaf blight. Caraka Tani: Journal of Sustainable Agriculture, 39(2), 381–395. https://doi.org/10.20961/carakatani.v39i2.88198

Onyia, V. N., Chukwudi, U. P., Ezea, A. C., Atugwu, A. I., & Ene, C. O. (2020). Correlation and path coefficient analyses of yield and yield components of eggplant (Solanum melongena) in a coarse-textured Ultisol. Information Processing in Agriculture, 7(1), 173–181. https://doi.org/10.1016/j.inpa.2019.03.005

Pankaj, Y. K., Kumar, R., Pal, L., Gill, K. S., Nagarajan, R., Kumar, V., & Panigrahi, S. (2022). Performance and yield stability of doubled haploid population of wheat (Triticum aestivum L.) under high-temperature regime. Cereal Research Communicatio ns, 50(4), 1185–1203. https://doi.org/10.1007/s42976-022-00247-4

Qu, Y., Fernie, A. R., Liu, J., & Yan, J. (2024). Doubled haploid technology and synthetic apomixis: Recent advances and applications in future crop breeding. Molecular Plant, 17(7), 1005–1018. https://doi.org/10.1016/j.molp.2024.06.005

Rahman, M. M., & Connor, J. D. (2022). The effect of high-yielding variety on rice yield, farm income and household nutrition: Evidence from Rural Bangladesh. Agriculture and Food Security, 11(1), 35. https://doi.org/10.1186/s40066-022-00365-6

Rajan, N., Debnath, S., Perveen, K., Khan, F., Pandey, B., Srivastava, A., … & Lal, M. (2023). Optimizing hybrid vigor: A comprehensive analysis of genetic distance and heterosis in eggplant landraces. Frontiers in Plant Science, 14, 1238870. https://doi.org/10.3389/fpls.2023.1238870

Rasheed, S., & Shareef, R. (2019). Effect of seaweed extract and plant spacing on growth and yield of two eggplant hybrids (Solanum melongena L.). The Journal of The University of Duhok, 22(2), 101–112. https://doi.org/10.26682/ajuod.2019.22.2.11

Ren, J., Wu, P., Trampe, B., Tian, X., Lübberstedt, T., & Chen, S. (2017). Novel technologies in doubled haploid line development. Plant Biotechnology Journal, 15(11), 1361–1370. https://doi.org/10.1111/pbi.12805

Rivas-Sendra, A., Campos-Vega, M., Calabuig-Serna, A., & Seguí-Simarro, J. M. (2017). Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica, 213(4), 89. https://doi.org/10.1007/s10681-017-1879-3

Rosa-Martínez, E., Villanueva, G., Şahin, A., Gramazio, P., García-Martínez, M. D., Raigón, M. D., … & Plazas, M. (2023). Characterization and QTL identification in eggplant introgression lines under two N fertilization levels. Horticultural Plant Journal, 9(5), 971–985. https://doi.org/10.1016/j.hpj.2022.08.003

Sadessa, K., Beyene, Y., Ifie, B. E., Gowda, M., Suresh, L. M., Olsen, M. S., … & Wegary, D. (2024). Agronomic performance and resistance to maize lethal necrosis in maize hybrids derived from doubled haploid lines. Agronomy, 14(10), 2443. https://doi.org/10.3390/agronomy14102443

Saleh, M. M., Muhra, O., & Suliman, Z. A. (2019). Selection criteria for yield in eggplant (Solanum melongena L.). Horticultural Biotechnology Research, 5, 1–3. https://doi.org/10.25081/hbr.2019.v5.5454

Sanchez, D., Sadoun, S. Ben, Mary-Huard, T., Allier, A., Moreau, L., & Charcosse, A. (2023). Improving the use of plant genetic resources to sustain breeding programs’ efficiency. Proceedings of the National Academy of Sciences of the United States of America, 120(14), e2205780119. https://doi.org/10.1073/pnas.2205780119

Sawadogo, B., Bationo-Kando, P., Sawadogo, N., Kiebere, Z., Kiebere, M., Nanema, K. R., … & Zongo, J. D. (2016). Variation, correlation and heritability of interest characters for selection of African eggplant. African Crop Science Journal, 24(2), 213. https://doi.org/10.4314/acsj.v24i2.9

Seymour, D. K., Filiault, D. L., Henry, I. M., Monson-Miller, J., Ravi, M., Pang, A., … & Maloof, J. N. (2012). Rapid creation of arabidopsis doubled haploid lines for quantitative trait locus mapping. PNAS, 109(11), 4227–4232. https://doi.org/10.1073/pnas.1117277109

Singh, S., Dey, S. S., Bhatia, R., Kumar, R., Sharma, K., & Behera, T. K. (2019). Heterosis and combining ability in cytoplasmic male sterile and doubled haploid based Brassica oleracea progenies and prediction of heterosis using microsatellites. PLoS ONE, 14(8), e0210772. https://doi.org/10.1371/journal.pone.0210772

Stansfield, W. D. (1983). Theory and problems of genetics (Schaum’s outline series) (2nd ed.). New Delhi: McGraw-Hill. Retrieved from https://scholar.google.co.id/scholar?cites=13249985438903287298&as_sdt=2005&sciodt=0,5&hl=id&authuser=3

Starosta, E., Szwarc, J., Niemann, J., Szewczyk, K., & Weigt, D. (2023). Brassica napus haploid and double haploid production and its latest applications. Current Issues in Molecular Biology, 45(5), 4431–4450. https://doi.org/10.3390/cimb45050282

Sudeepthi, K., Srinivas, T., Kumar, B. N. V. S. R. R., Jyothula, D. P. B., & Umar, S. N. (2020). Assessment of genetic variability, character association and path analysis for yield and yield component traits in rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 11(1), 65–69. https://doi.org/10.37992/2020.1101.026

Swarup, S., Cargill, E. J., Crosby, K., Flagel, L., Kniskern, J., & Glenn, K. C. (2021). Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61(2), 839–852. https://doi.org/10.1002/csc2.20377

Tirtana, A., Purwoko, B. S., Dewi, I. S., & Trikoesoemaningtyas. (2021). Selection of upland rice lines in advanced yield trials and response to abiotic stress. Biodiversitas, 22(10), 4694–4703. https://doi.org/10.13057/biodiv/d221063

Uddin, M. S., Billah, M., Afroz, R., Rahman, S., Jahan, N., Hossain, M. G., … & Hossain, A. (2021). Evaluation of 130 eggplant (Solanum melongena L.) Genotypes for future breeding program based on qualitative and quantitative traits, and various genetic parameters. Horticulturae, 7(10), 376. https://doi.org/10.3390/horticulturae7100376

Velu, S. K., Krishnan, B., & Venkataraman, G. (2025). Realizing the yield potential of narrow leaf 1 (NAL1) in rice: The way forward. Plant Physiology and Biochemistry, 225, 109982. https://doi.org/10.1016/j.plaphy.2025.109982

Yuana, H. W., Purwoko, B. S., Suwarno, W. B., Dewi, I. S., & Gunarsih, C. (2025). Yield trial of doubled-haploid rice lines with multiple abiotic stress tolerance. Caraka Tani: Journal of Sustainable Agriculture, 40(3), 390–403. https://doi.org/10.20961/carakatani.v40i3.94856

Refbacks

  • There are currently no refbacks.