Morpho-Agronomic Characterization and Yield Evaluation of Doubled Haploid Eggplant (Solanum melongena L.) Lines Derived from Anther Culture
Abstract
Keywords
Full Text:
PDFReferences
Al-Ashkar, I., Alderfasi, A., El-Hendawy, S., Al-Suhaibani, N., El-Kafafi, S., & Seleiman, M. F. (2019). Detecting salt tolerance in doubled haploid wheat lines. Agronomy, 9(4), 211. https://doi.org/10.3390/agronomy9040211
Alsabah, R., Purwoko, B. S., Dewi, I. S., & Wahyu, Y. (2019). Selection index for selecting promising doubled haploid lines of black rice. SABRAO Journal of Breeding and Genetics, 51(4), 430–441. Retrieved from https://sabraojournal.org/wp-content/uploads/2020/01/SABRAO-J-Breed-Genet-514-430-441-Purwoko.pdf
Burton, G. W., & DeVane, E. H. (1953). Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agronomy Journal, 45(10), 478–481. https://doi.org/10.2134/agronj1953.00021962004500100005x
Chaikam, V., Molenaar, W., Melchinger, A. E., & Boddupalli, P. M. (2019). Doubled haploid technology for line development in maize: Technical advances and prospects. Theoretical and Applied Genetics, 132(12), 3227–3243. https://doi.org/10.1007/s00122-019-03433-x
Chen, Y. R., Lübberstedt, T., & Frei, U. K. (2023). Development of doubled haploid inducer lines facilitates selection of superior haploid inducers in maize. Frontiers in Plant Science, 14, 1320660. https://doi.org/10.3389/fpls.2023.1320660
Damnjanović, J., Girek, Z., Milojević, J., Zečević, V., Živanović, T., Ugrinović, M., & Pavlović, S. (2022). Assessment of eggplant (Solanum melongena L.) genotypes and selection of parameters for better yield. Chemistry Proceedings, 10(1), 31. https://doi.org/10.3390/iocag2022-12309
Dwivedi, S. L., Heslop-Harrison, P., Amas, J., Ortiz, R., & Edwards, D. (2024). Epistasis and pleiotropy-induced variation for plant breeding. Plant Biotechnology Journal, 22(10), 2788–2807. https://doi.org/10.1111/pbi.14405
Dwivedi, S. L., Reynolds, M. P., & Ortiz, R. (2021). Mitigating trade-offs in plant breeding. ISCIENCE, 24(9), 102965. https://doi.org/10.1016/j.isci.2021.102965
Eliby, S., Bekkuzhina, S., Kishchenko, O., Iskakova, G., Kylyshbayeva, G., Jatayev, S., … & Shavrukov, Y. (2022). Developments and prospects for doubled haploid wheat. Biotechnology Advances, 60, 108007. https://doi.org/10.1016/j.biotechadv.2022.108007
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Essex, UK: Longmans Green.
FAOSTAT. (2022). FAOSTAT Database Collection. Food and Agriculture Organization Statistics. Retrieved from https://www.fao.org/faostat/en/#data/QCL
FAOSTAT. (2023). FAOSTAT Database Collection. Food and Agriculture Organization Statistics. Retrieved from https://www.fao.org/faostat/en/#data/QCL
Faysal, A. S. M., Ali, L., Azam, M. G., Sarker, U., Ercisli, S., Golokhvast, K. S., & Marc, R. A. (2022). Genetic variability, character association, and path coefficient analysis in Transplant Aman rice genotypes. Plants, 11(21), 2952. https://doi.org/10.3390/plants11212952
Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). Canada, US: John Wiley & Sons. Retrieved from https://scholar.google.co.id/scholar?cites=14957946235125646981&as_sdt=2005&sciodt=0,5&hl=id&authuser=3
Gramazio, P., Alonso, D., Arrones, A., Villanueva, G., Plazas, M., Toppino, L., … & Prohens, J. (2023). Conventional and new genetic resources for an eggplant breeding revolution. Journal of Experimental Botany, 74(20), 6285–6305. https://doi.org/10.1093/jxb/erad260
Gurung, J., Limbu, S., & Sharma, L. (2018). Effects of spacing and planting time on growth and fruit yield of Solanum aethiopicum. The Pharma Innovation Journal, 7(4), 836–839. Retrieved from https://www.thepharmajournal.com/archives/2018/vol7issue4/PartN/7-4-70-218.pdf
Hale, B., Ferrie, A. M. R., Chellamma, S., Samuel, J. P., & Phillips, G. C. (2022). Androgenesis-based doubled haploidy: Past, present, and future perspectives. Frontiers in Plant Science, 12, 751230. https://doi.org/10.3389/fpls.2021.751230
Hooghvorst, I., & Nogués, S. (2021). Chromosome doubling methods in doubled haploid and haploid inducer-mediated genome-editing systems in major crops. Plant Cell Reports, 40, 255–270. https://doi.org/10.1007/s00299-020-02605-0
IBPGR. (1990). Descriptors for eggplant. Rome, Italy: International Board for Plant Genetic Resources. Retrieved from https://hdl.handle.net/10568/72874
Kumar, D., Gurjar, N. S., Singh, P., Kumar, V., Tiwari, B., Kumar, A., … & Pandey, A. (2024). To study correlation between yield and its components in eggplant (Solanum melongena L.). Journal of Experimental Agriculture International, 46(7), 739–753. https://doi.org/10.9734/jeai/2024/v46i72627
Kyum, M., Kaur, H., Kamboj, A., Goyal, L., & Bhatia, D. (2022). Strategies and prospects of haploid induction in rice (Oryza sativa). Plant Breeding, 141(1), 1–11. https://doi.org/10.1111/pbr.12971
Lenaerts, B., Collard, B. C. Y., & Demont, M. (2019). Review: Improving global food security through accelerated plant breeding. Plant Science, 287, 11027. https://doi.org/10.1016/j.plantsci.2019.110207
Lestari, P., Syukur, M., Trikoesoemaningtyas, & Widiyono, W. (2023). Genetic variability and path analysis of chili (Capsicum annuum L.) associated characters under drought stress from vegetative to generative phases. Biodiversitas, 24(4), 2315–2323. https://doi.org/10.13057/biodiv/d240445
Mathan, J., Singh, A., & Ranjan, A. (2021). Sucrose transport and metabolism control carbon partitioning between stem and grain in rice. Journal of Experimental Botany, 72(12), 4355–4372. https://doi.org/10.1093/jxb/erab066
Meng, D., Liu, C., Chen, S., & Jin, W. (2021). Haploid induction and its application in maize breeding. Molecular Breeding, 41(3), 20. https://doi.org/10.1007/s11032-021-01204-5
Ministry of Agriculture. (2009). Standar operasional prosedur (SOP) budidaya terung. Jakarta, Indonesia: Department of Agriculture, Directorate General of Horticulture, Directorate of Vegetable Crops and Biopharmaceuticals. Retrieved from https://ppid.pertanian.go.id/doc/1/Budidaya/Budidaya%20Terung.pdf
Ministry of Agriculture. (2023). Statistics of food consumption 2023. Jakarta, Indonesia: Ministry of Agriculture of Indonesia. Retrieved from https://satudata.pertanian.go.id/assets/docs/publikasi/Buku_Statsitik_Konsumsi_Pangan_2023.pdf
Mir, R., Calabuig-Serna, A., & Seguí-Simarro, J. M. (2021). Doubled haploids in eggplant. Biology, 10(7), 685. https://doi.org/10.3390/biology10070685
Mulyana, A., Purwoko, B., Dewi, I., & Maharijaya, S. (2023). Comparison of six anther culture methods for the production of doubled haploids in eggplant (Solanum melongena L.). Euphytica, 219(4), 44. https://doi.org/10.1007/s10681-023-03171-8
Nuraeni, E., Wahyu, Y., & Trikoesoemaningtyas. (2021). Selection of wheat (Triticum aestivum) lines for the high altitude of Indonesia based on single-and multi-character adaptation. Biodiversitas, 22(12), 5530–5535. https://doi.org/10.13057/biodiv/d221236
Nurhidayah, S., Purwoko, B. S., Dewi, I. S., Suwarno, W. B., Lubis, I., & Yuriyah, S. (2024). Resistance of doubled haploid rice lines with green super rice characters to bacterial leaf blight. Caraka Tani: Journal of Sustainable Agriculture, 39(2), 381–395. https://doi.org/10.20961/carakatani.v39i2.88198
Onyia, V. N., Chukwudi, U. P., Ezea, A. C., Atugwu, A. I., & Ene, C. O. (2020). Correlation and path coefficient analyses of yield and yield components of eggplant (Solanum melongena) in a coarse-textured Ultisol. Information Processing in Agriculture, 7(1), 173–181. https://doi.org/10.1016/j.inpa.2019.03.005
Pankaj, Y. K., Kumar, R., Pal, L., Gill, K. S., Nagarajan, R., Kumar, V., & Panigrahi, S. (2022). Performance and yield stability of doubled haploid population of wheat (Triticum aestivum L.) under high-temperature regime. Cereal Research Communicatio ns, 50(4), 1185–1203. https://doi.org/10.1007/s42976-022-00247-4
Qu, Y., Fernie, A. R., Liu, J., & Yan, J. (2024). Doubled haploid technology and synthetic apomixis: Recent advances and applications in future crop breeding. Molecular Plant, 17(7), 1005–1018. https://doi.org/10.1016/j.molp.2024.06.005
Rahman, M. M., & Connor, J. D. (2022). The effect of high-yielding variety on rice yield, farm income and household nutrition: Evidence from Rural Bangladesh. Agriculture and Food Security, 11(1), 35. https://doi.org/10.1186/s40066-022-00365-6
Rajan, N., Debnath, S., Perveen, K., Khan, F., Pandey, B., Srivastava, A., … & Lal, M. (2023). Optimizing hybrid vigor: A comprehensive analysis of genetic distance and heterosis in eggplant landraces. Frontiers in Plant Science, 14, 1238870. https://doi.org/10.3389/fpls.2023.1238870
Rasheed, S., & Shareef, R. (2019). Effect of seaweed extract and plant spacing on growth and yield of two eggplant hybrids (Solanum melongena L.). The Journal of The University of Duhok, 22(2), 101–112. https://doi.org/10.26682/ajuod.2019.22.2.11
Ren, J., Wu, P., Trampe, B., Tian, X., Lübberstedt, T., & Chen, S. (2017). Novel technologies in doubled haploid line development. Plant Biotechnology Journal, 15(11), 1361–1370. https://doi.org/10.1111/pbi.12805
Rivas-Sendra, A., Campos-Vega, M., Calabuig-Serna, A., & Seguí-Simarro, J. M. (2017). Development and characterization of an eggplant (Solanum melongena) doubled haploid population and a doubled haploid line with high androgenic response. Euphytica, 213(4), 89. https://doi.org/10.1007/s10681-017-1879-3
Rosa-Martínez, E., Villanueva, G., Şahin, A., Gramazio, P., García-Martínez, M. D., Raigón, M. D., … & Plazas, M. (2023). Characterization and QTL identification in eggplant introgression lines under two N fertilization levels. Horticultural Plant Journal, 9(5), 971–985. https://doi.org/10.1016/j.hpj.2022.08.003
Sadessa, K., Beyene, Y., Ifie, B. E., Gowda, M., Suresh, L. M., Olsen, M. S., … & Wegary, D. (2024). Agronomic performance and resistance to maize lethal necrosis in maize hybrids derived from doubled haploid lines. Agronomy, 14(10), 2443. https://doi.org/10.3390/agronomy14102443
Saleh, M. M., Muhra, O., & Suliman, Z. A. (2019). Selection criteria for yield in eggplant (Solanum melongena L.). Horticultural Biotechnology Research, 5, 1–3. https://doi.org/10.25081/hbr.2019.v5.5454
Sanchez, D., Sadoun, S. Ben, Mary-Huard, T., Allier, A., Moreau, L., & Charcosse, A. (2023). Improving the use of plant genetic resources to sustain breeding programs’ efficiency. Proceedings of the National Academy of Sciences of the United States of America, 120(14), e2205780119. https://doi.org/10.1073/pnas.2205780119
Sawadogo, B., Bationo-Kando, P., Sawadogo, N., Kiebere, Z., Kiebere, M., Nanema, K. R., … & Zongo, J. D. (2016). Variation, correlation and heritability of interest characters for selection of African eggplant. African Crop Science Journal, 24(2), 213. https://doi.org/10.4314/acsj.v24i2.9
Seymour, D. K., Filiault, D. L., Henry, I. M., Monson-Miller, J., Ravi, M., Pang, A., … & Maloof, J. N. (2012). Rapid creation of arabidopsis doubled haploid lines for quantitative trait locus mapping. PNAS, 109(11), 4227–4232. https://doi.org/10.1073/pnas.1117277109
Singh, S., Dey, S. S., Bhatia, R., Kumar, R., Sharma, K., & Behera, T. K. (2019). Heterosis and combining ability in cytoplasmic male sterile and doubled haploid based Brassica oleracea progenies and prediction of heterosis using microsatellites. PLoS ONE, 14(8), e0210772. https://doi.org/10.1371/journal.pone.0210772
Stansfield, W. D. (1983). Theory and problems of genetics (Schaum’s outline series) (2nd ed.). New Delhi: McGraw-Hill. Retrieved from https://scholar.google.co.id/scholar?cites=13249985438903287298&as_sdt=2005&sciodt=0,5&hl=id&authuser=3
Starosta, E., Szwarc, J., Niemann, J., Szewczyk, K., & Weigt, D. (2023). Brassica napus haploid and double haploid production and its latest applications. Current Issues in Molecular Biology, 45(5), 4431–4450. https://doi.org/10.3390/cimb45050282
Sudeepthi, K., Srinivas, T., Kumar, B. N. V. S. R. R., Jyothula, D. P. B., & Umar, S. N. (2020). Assessment of genetic variability, character association and path analysis for yield and yield component traits in rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 11(1), 65–69. https://doi.org/10.37992/2020.1101.026
Swarup, S., Cargill, E. J., Crosby, K., Flagel, L., Kniskern, J., & Glenn, K. C. (2021). Genetic diversity is indispensable for plant breeding to improve crops. Crop Science, 61(2), 839–852. https://doi.org/10.1002/csc2.20377
Tirtana, A., Purwoko, B. S., Dewi, I. S., & Trikoesoemaningtyas. (2021). Selection of upland rice lines in advanced yield trials and response to abiotic stress. Biodiversitas, 22(10), 4694–4703. https://doi.org/10.13057/biodiv/d221063
Uddin, M. S., Billah, M., Afroz, R., Rahman, S., Jahan, N., Hossain, M. G., … & Hossain, A. (2021). Evaluation of 130 eggplant (Solanum melongena L.) Genotypes for future breeding program based on qualitative and quantitative traits, and various genetic parameters. Horticulturae, 7(10), 376. https://doi.org/10.3390/horticulturae7100376
Velu, S. K., Krishnan, B., & Venkataraman, G. (2025). Realizing the yield potential of narrow leaf 1 (NAL1) in rice: The way forward. Plant Physiology and Biochemistry, 225, 109982. https://doi.org/10.1016/j.plaphy.2025.109982
Yuana, H. W., Purwoko, B. S., Suwarno, W. B., Dewi, I. S., & Gunarsih, C. (2025). Yield trial of doubled-haploid rice lines with multiple abiotic stress tolerance. Caraka Tani: Journal of Sustainable Agriculture, 40(3), 390–403. https://doi.org/10.20961/carakatani.v40i3.94856
Refbacks
- There are currently no refbacks.