Dynamics of Nitrogen Mineralization by Organic and Inorganic Amendments Through Enzyme Activity of Microbial Community in Laboratory Incubation

Md.Tariful Alam Khan, Md. Billal Hossain Momen, Md. Rashedur Rahman Tanvir, Md. Robiul Islam

Abstract

Chemical fertilizers provide an immediate nitrogen supply but require repeated application at critical growth stages; however, excessive chemical fertilizer application harms the environment. In contrast, organic fertilizers release nitrogen gradually for a long time, and microbial fertilizers enhance nutrient availability. This study investigated the effects of integrating chemical nitrogen (CN), poultry manure (PM), and microbial fertilizer (MBF) on soil nitrogen availability and microbial activity. Eight treatments were applied: T0 (control), T1 (100% CN), T2 (100% CN + MBF), T3 (75% CN + 25% PM + MBF), T4 (50% CN + 50% PM + MBF), T5 (25% CN + 75% PM + MBF), T6 (100% PM + MBF), and T7 (100% PM). Soil nitrogen fractions, microbial biomass, enzyme activities, and phospholipid fatty acid (PLFA) composition were analyzed. Integrated treatments improved nitrogen availability compared to sole CN application, with T4 showing the highest NO₃--N accumulation. Additionally, T4 increased total nitrogen, organic carbon, and microbial biomass, enhancing soil fertility. Enzymatic activities, including urease, catalase, invertase, and cellulase, responded positively to the integrated treatments, reflecting improved soil health. PLFA analysis revealed shifts in microbial community composition, highlighting the role of PM in promoting microbial diversity and biomass. These findings highlight that blending 50% CN and 50% PM with MBF balances immediate and sustained nitrogen release while stimulating microbial diversity and soil enzyme functions and improves overall soil health, making it a promising strategy for sustainable soil fertility management and reducing chemical fertilizer dependency.

Keywords

integrated fertilizer; microbial fertilizer; mineralization; PLFAs; poultry manure

Full Text:

PDF

References

Abbasi, M. K., & Khizar, A. (2012). Microbial biomass carbon and nitrogen transformations in a loam soil amended with organic–inorganic N sources and their effect on growth and N-uptake in maize. Ecological Engineering, 39, 123–132. https://doi.org/10.1016/j.ecoleng.2011.12.027

Aboutayeb, R., Fijahi, S., Hssaini, L., & Azim, K. (2024). Quality assessment of poultry manure compost: Focus on organic amendment and bioremediation roles toward sustainable agriculture. Euro-Mediterranean Journal for Environmental Integration, 1–23. https://doi.org/10.1007/s41207-024-00698-7

Alizadeh, P., Fallah, S., & Raiesi, F. (2012). Potential N mineralization and availability to irrigated maize in a calcareous soil amended with organic manures and urea under field conditions. International Journal of Plant Production, 6(4), 493–512. https://doi.org/10.22069/ijpp.2012.762

Amorim, H. C., Ashworth, A. J., Zinn, Y. L., & Sauer, T. J. (2022). Soil organic carbon and nutrients affected by tree species and poultry litter in a 17-year agroforestry site. Agronomy, 12(3), 641. https://doi.org/10.3390/agronomy12030641

Balser, T. C., & Firestone, M. K. (2005). Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry, 73, 395–415. https://doi.org/10.1007/s10533-004-0372-y

Canisares, L. P., Banet, T., Rinehart, B., McNear, D., & Poffenbarger, H. (2023). Litter quality and living roots affected the formation of new mineral-associated organic carbon but did not affect total mineral-associated organic carbon in a short-term incubation. Geoderma, 430, 116302. https://doi.org/10.1016/j.geoderma.2022.116302

Cardarelli, M., El Chami, A., Iovieno, P., Rouphael, Y., Bonini, P., & Colla, G. (2023). Organic fertilizer sources distinctively modulate productivity, quality, mineral composition, and soil enzyme activity of greenhouse lettuce grown in degraded soil. Agronomy, 13(1), 194. https://doi.org/10.3390/agronomy13010194

Cheng, Z., Wu, S., Du, J., Pan, H., Lu, X., Liu, Y., & Yang, L. (2023). Variations in the diversity and biomass of soil bacteria and fungi under different fire disturbances in the Taiga Forests of Northeastern China. Forests, 14(10), 2063. https://doi.org/10.3390/f14102063

Curtis, J. C. D., Luchese, A. V., & Missio, R. F. (2023). Application of soil remineralizer to poultry litter as an efficient and sustainable alternative for fertilizing maize crop. Journal of Plant Nutrition, 46(3), 423–438. https://doi.org/10.1080/01904167.2022.2071728

Daly, E. J., Hernandez-Ramirez, G., Congreves, K. A., Clough, T., Voigt, C., Harris, E., & Ruser, R. (2023). Soil organic nitrogen priming to nitrous oxide: A synthesis. Soil Biology and Biochemistry, 189, 109254. https://doi.org/10.1016/j.soilbio.2023.109254

Das, S. K., & Ghosh, G. K. (2024). Soil hydro-physical properties affected by biomass-derived biochar and organic manure: A low-cost technology for managing acidic mountain sandy soils of north eastern region of India. Biomass Conversion and Biorefinery, 14(5), 6621–6635. https://doi.org/10.1007/s13399-022-03107-7

Deng, S., & Tabatabai, M. (1994). Cellulase activity of soils. Soil Biology and Biochemistry, 26(10), 1347–1354. https://doi.org/10.1016/0038-0717(94)90216-X

Fraterrigo, J. M., Balser, T. C., & Turner, M. G. (2006). Microbial community variation and its relationship with nitrogen mineralization in historically altered forests. Ecology, 87(3), 570–579. https://doi.org/10.1890/05-0638

Go Oco, R., Devanadera, M., & de Grano, R. (2023). Utilization of Nostoc piscinale as potential biofertilizer to the growth and development of Oryza sativa L. Caraka Tani: Journal of Sustainable Agriculture, 39(1), 22–37. http://dx.doi.org/10.20961/carakatani.v39i1.77067

Grijalva, D. F. M., Crozier, C. R., Smyth, T. J., & Hardy, D. H. (2010). Nitrogen, phosphorus, and liming effects of poultry layer manures in coastal plain and piedmont soils. Agronomy Journal, 102(5), 1329–1339. https://doi.org/10.2134/agronj2009.0283

Guo, L., Zhao, S., Song, Y., Tang, M., & Li, H. (2022). Green finance, chemical fertilizer use and carbon emissions from agricultural production. Agriculture, 12(3), 313. https://doi.org/10.3390/agriculture12030313

He, Y., Wang, Y., Jiang, Y., Yin, G., Cao, S., Liu, X., …, & Chen, F. (2023). Drivers of soil respiration and nitrogen mineralization change after litter management at a subtropical Chinese sweetgum tree plantation. Soil Use and Management, 39(1), 92–103. https://doi.org/10.1111/sum.12823

Hemathilake, D., & Gunathilake, D. (2021). Agricultural productivity and food supply to meet increased demands. Future Foods, 539–553. https://doi.org/10.1016/B978-0-323-91001-9.00016-5

Hoyt, C. M. (2022). Genetic variability of growth and development in response to nitrogen in two soft winter wheat populations (Doctoral dissertation). Blacksburg, Virginia: Virginia Tech. Retrieved from https://vtechworks.lib.vt.edu/items/49cfb416-6bb2-491b-ac42-f98db0e1d0ea

Iqbal, A., He, L., Ali, I., Yuan, P., Khan, A., Hua, Z., Wei, S., & Jiang, L. (2022). Partial substation of organic fertilizer with chemical fertilizer improves soil biochemical attributes, rice yields, and restores bacterial community diversity in a paddy field. Frontiers in Plant Science, 13, 895230. https://doi.org/10.3389/fpls.2022.895230

Iqbal, B., Khan, I., Javed, Q., Alabbosh, K. F., Inamullah, I., Zhou, Z., & Rehman, A. (2023). The high phosphorus incorporation promotes the soil enzymatic activity, nutritional status, and biomass of the crop. Polish Journal of Environmental Studies, 32(3), 2125–2139. https://doi.org/10.15244/pjoes/158765

Jenkinson, D. S., Brookes, P. C., & Powlson, D. S. (2004). Measuring soil microbial biomass. Soil Biology and Biochemistry, 36(1), 5–7. https://doi.org/10.1016/j.soilbio.2003.10.002

Kaur, H., Kommalapati, R. R., & Saroa, G. S. (2023). Kinetics of native and added carbon mineralization on incubating at different soil and moisture conditions in Typic Ustochrepts and Typic Halustalf. International Soil and Water Conservation Research, 11(2), 365–381. https://doi.org/10.1016/j.iswcr.2023.01.006

Kumar, V., Goyal, V., Dahiya, R., & Dey, P. (2021). Impact of long-term application of organic and inorganic nutrient through inductive cum targeted yield model on soil physical properties under pearl millet [Pennisetum glaucum (L.)]–wheat [Triticum aestivum (L.)] cropping system of semi-arid North-West India. Communications in Soil Science and Plant Analysis, 52(20), 2500–2515. https://doi.org/10.1080/00103624.2021.1953050

Li, W., Xie, L., Zhao, C., Hu, X., & Yin, C. (2023). Nitrogen fertilization increases soil microbial biomass and alters microbial composition especially under low soil water availability. Microbial Ecology, 86(1), 536–548. https://doi.org/10.1007/s00248-022-02103-8

Lin, L., Xu, E. G., Liu, M., Yang, Y., Zhou, A., Suyamud, B., Pan, X., & Yuan, W. (2023). Microbiological processes of submicrometer plastics affecting submerged plant growth in a chronic exposure microcosm. Environmental Science & Technology Letters, 10(1), 33–39. https://doi.org/10.1021/acs.estlett.2c00789

Liu, J., Lyu, M., Xu, X., Liu, C., Qin, H., Tian, G., …, & Jiang, Y. (2022). Exogenous sucrose promotes the growth of apple rootstocks under high nitrate supply by modulating carbon and nitrogen metabolism. Plant Physiology and Biochemistry, 192, 196–206. https://doi.org/10.1016/j.plaphy.2022.10.005

Liu, Q., Zhao, Y., Li, T., Chen, L., Chen, Y., & Sui, P. (2023). Changes in soil microbial biomass, diversity, and activity with crop rotation in cropping systems: A global synthesis. Applied Soil Ecology, 186, 104815. https://doi.org/10.1016/j.apsoil.2023.104815

Liu, X., & Zhang, L. (2023). Effects of additives on the co-composting of forest residues with cattle manure. Bioresource Technology, 368, 128384. https://doi.org/10.1016/j.biortech.2022.128384

Ma, Y., Zuohereguli, K., Zhang, L., Kang, Y., Shi, L., Xu, H., …, & Dong, C. (2025). Soil microbial mechanisms to improve pear seedling growth by applying Bacillus and Trichoderma-amended biofertilizers. Plant, Cell & Environment. https://doi.org/10.1111/pce.15395

Manogaran, M. D., Shamsuddin, M. R., Yusoff, M. H., & Lay, M. (2022). An overview on available treatment processes of poultry manure in Malaysia. AIP Conference Proceedings, 2610(1), 040005. https://doi.org/10.1063/5.0099555

Mansour, S. R., Elhaloos, B. A., & Abdel-Lateif, K. S. (2023). Phenotypic and genetic diversity of native Rhizobium isolated from root nodules of leguminous plants grown in reclaimed soil, Egypt. SABRAO Journal of Breeding and Genetics, 55(2), 344–357. http://doi.org/10.54910/sabrao2023.55.2.7

Mindari, W., Chakim, M., Widjajani, B., Sasongko, P., Aditya, H., Pazi, A., & Gandaseca, S. (2024). The optimization of biosilica and humic acid to increase soil nutrient availability and nutrient uptake in rice plant in sandy soil. Caraka Tani: Journal of Sustainable Agriculture, 40(1), 18–33. http://dx.doi.org/10.20961/carakatani.v40i1.89018

Moore, A. D., Alva, A. K., Collins, H. P., & Boydston, R. A. (2010). Mineralization of nitrogen from biofuel by-products and animal manures amended to a sandy soil. Communications in Soil Science and Plant Analysis, 41(11), 1315–1326. https://doi.org/10.1080/00103621003759320

Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 539–579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29

Pan, W., Zhou, J., Tang, S., Wu, L., Ma, Q., Marsden, K. A., Chadwick, D. R., & Jones, D. L. (2023). Utilisation and transformation of organic and inorganic nitrogen by soil microorganisms and its regulation by excessive carbon and nitrogen availability. Biology and Fertility of Soils, 59(4), 379–389. https://doi.org/10.1007/s00374-023-01712-w

Paul, E. (2014). Soil Microbiology, Ecology and Biochemistry. Cambridge, Massachusetts, United State: Academic Press. Retrieved from https://scholar.google.co.id/scholar?cites=9477239163585599939&as_sdt=2005&sciodt=0,5&hl=id

Peacock, A., Mullen, M., Ringelberg, D., Tyler, D., Hedrick, D., Gale, P., & White, D. (2001). Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biology and Biochemistry, 33(7–8), 1011–1019. https://doi.org/10.1016/S0038-0717(01)00004-9

Peng, G. A. O., Zhang, T., Lei, X.-Y., Cui, X.-W., Lu, Y.-X., Fan, P.-F., …, & Zhang, Z.-H. (2023). Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers. Journal of Integrative Agriculture, 22(7), 2221–2232. https://doi.org/10.1016/j.jia.2023.02.037

Peng, J., Feng, Y., Wang, X., Li, J., Xu, G., Phonenasay, S., …, & Lu, W. (2021). Effects of nitrogen application rate on the photosynthetic pigment, leaf fluorescence characteristics, and yield of indica hybrid rice and their interrelations. Scientific Reports, 11(1), 7485. https://doi.org/10.1038/s41598-021-86858-z

Pingree, M. R. A., Kardol, P., Nilsson, M., Wardle, D. A., Maaroufi, N. I., & Gundale, M. J. (2022). No evidence that conifer biochar impacts soil functioning by serving as microbial refugia in boreal soils. GCB Bioenergy, 14(8), 972–988. https://doi.org/10.1111/gcbb.12978

Prado, J., Alvarenga, P., Ribeiro, H., & Fangueiro, D. (2023). Nutrient potential leachability in a sandy soil amended with manure-based fertilisers. Agronomy, 13(4), 990. https://doi.org/10.3390/agronomy13040990

Qafoku, O. S., Cabrera, M. L., Windham, W. R., & Hill, N. S. (2001). Rapid methods to determine potentially mineralizable nitrogen in broiler litter. Journal of Environmental Quality, 30(1), 217–221. https://doi.org/10.2134/jeq2001.301217x

Raza, T., Qadir, M. F., Khan, K. S., Eash, N. S., Yousuf, M., Chatterjee, S., ..., & Oetting, J. N. (2023). Unrevealing the potential of microbes in decomposition of organic matter and release of carbon in the ecosystem. Journal of Environmental Management, 344, 118529. https://doi.org/10.1016/j.jenvman.2023.118529

Sarkar, D., Dubey, P. K., Chaurasiya, R., Sankar, A., Shikha, Chatterjee, N., ..., & Rakshit, A. (2021). Organic interventions conferring stress tolerance and crop quality in agroecosystems during the United Nations Decade on Ecosystem Restoration. Land Degradation & Development, 32(17), 4797–4816. https://doi.org/10.1002/ldr.4094

Shah, G. M., Rashid, M. I., Shah, G. A., Groot, J. C. J., & Lantinga, E. A. (2013). Mineralization and herbage recovery of animal manure nitrogen after application to various soil types. Plant and Soil, 365(1–2), 69–79. https://doi.org/10.1007/s11104-012-1347-8

Shen, M., Song, B., Zhou, C., Almatrafi, E., Hu, T., Zeng, G., & Zhang, Y. (2022). Recent advances in impacts of microplastics on nitrogen cycling in the environment: A review. Science of the Total Environment, 815, 152740. https://doi.org/10.1016/j.scitotenv.2021.152740

Singh, T. B., Ali, A., Prasad, M., Yadav, A., Shrivastav, P., Goyal, D., & Dantu, P. K. (2020). Role of organic fertilizers in improving soil fertility. Contaminants in Agriculture (pp. 61–77). Springer International Publishing. https://doi.org/10.1007/978-3-030-41552-5_3

Smolander, A., & Kitunen, V. (2002). Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biology and Biochemistry, 34(5), 651–660. https://doi.org/10.1016/S0038-0717(01)00227-9

Souza, J. L. B., Antonangelo, J. A., Zhang, H., Reed, V., Finch, B., & Arnall, B. (2023). Impact of long-term fertilization in no-till on the stratification of soil acidity and related parameters. Soil and Tillage Research, 228, 105624. https://doi.org/10.1016/j.still.2022.105624

Sudhakar, D. R. (2025). Sustainable cultivation of Gracilaria edulis in poultry manure-derived media: Evaluating growth, biochemical properties, and agar quality. Food and Bioproducts Processing, 150, 78–88. https://doi.org/10.1016/j.fbp.2024.12.015

Sun, Y., Sun, S., Pei, F., Zhang, C., Cao, X., Kang, J., ..., & Ge, J. (2023). Response characteristics of flax retting liquid addition during chicken manure composting: Focusing on core bacteria in organic carbon mineralization and humification. Bioresource Technology, 381, 129112. https://doi.org/10.1016/j.biortech.2023.129112

Syamsiyah, J., Minardi, S., Herdiansyah, G., Cahyono, O., & Mentari, F. (2023). Physical properties of Alfisols, growth and products of hybrid corn affected by organic and inorganic fertilizer. Caraka Tani: Journal of Sustainable Agriculture, 38(1), 99–112. http://dx.doi.org/10.20961/carakatani.v38i1.65014

Tan, Y., Wang, J., He, Y., Yu, X., Chen, S., Penttinen, P., ..., & Zou, L. (2023). Organic fertilizers shape soil microbial communities and increase soil amino acid metabolites content in a blueberry orchard. Microbial Ecology, 85(1), 232–246. https://doi.org/10.1007/s00248-022-01960-7

Tariq, A., Zeng, F., Graciano, C., Ullah, A., Sadia, S., Ahmed, Z., ... & Zhang, Z. (2023). Regulation of metabolites by nutrients in plants. Plant Ionomics: Sensing, signaling, and regulation, pp. 1–18. https://doi.org/10.1002/9781119803041.ch1

Tong, Y., Ding, J., Xiao, M., Shahbaz, M., Zhu, Z., Chen, M., ..., & Ge, T. (2023). Microplastics affect activity and spatial distribution of C, N, and P hydrolases in rice rhizosphere. Soil Ecology Letters, 5(3), 220138. https://doi.org/10.1007/s42832-022-0138-2

Tóth, F. A., Yüksel, G., Tamás, J., & Nagy, P. T. (2023). Effects of organic composite fertilizer on soil nitrogen status and mineralization. Ecocycles, 9(3), 1–9. https://doi.org/10.19040/ecocycles.v9i3.329

Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19(6), 703–707. https://doi.org/10.1016/0038-0717(87)90052-6

Vanlauwe, B., Wendt, J., & Diels, J. (2001). Combined application of organic matter and fertilizer. Sustaining Soil Fertility in West Africa, 58, 247–279. https://doi.org/10.2136/sssaspecpub58.ch12

Wang, H., Liang, J., Huo, P., Zhang, L., Fan, X., & Sun, S. (2023). Understanding the cadmium passivation and nitrogen mineralization of aminated lignin in soil. Science of the Total Environment, 873, 162334. https://doi.org/10.1016/j.scitotenv.2023.162334

Wang, S., Wang, X., Liu, Y., Sun, G., Kong, D., Guo, W., & Sun, H. (2024). Regulatory effect of graphene on growth and carbon/nitrogen metabolism of maize (Zea mays L.). Journal of the Science of Food and Agriculture, 104(3), 1572–1582. https://doi.org/10.1002/jsfa.13038

Wen, L., Li, D., Xiao, X., & Tang, H. (2023). Alterations in soil microbial phospholipid fatty acid profile with soil depth following cropland conversion in karst region, southwest China. Environmental Science and Pollution Research, 30(1), 1502–1519. https://doi.org/10.1007/s11356-022-22178-7

Wu, T., Chellemi, D. O., Graham, J. H., Martin, K. J., & Rosskopf, E. N. (2008). Comparison of soil bacterial communities under diverse agricultural land management and crop production practices. Microbial Ecology, 55(2), 293–310. https://doi.org/10.1007/s00248-007-9276-4

Zelles, L. (1999). Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biology and Fertility of Soils, 29, 111–129. https://doi.org/10.1007/s003740050533

Zhang, L. (2023). Bamboo expansion and soil microbial PLFAs. Bamboo Expansion: Processes, Impacts, and Management (pp. 179–195). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-4113-1_11

Refbacks

  • There are currently no refbacks.