Development of Sustainable Bioplastic Composite Films from Cocoa Pod Husk Waste Cellulose and Kappa-Carrageenan
Abstract
Cocoa pod husk (CPH), typically considered agricultural waste, contains cellulose suitable for bioplastic production, offering a sustainable alternative to synthetic plastics. Its reinforcement with kappa-carrageenan is designed to improve the properties of cellulose-based bioplastics while reducing agricultural waste. This study evaluates the effects of cellulose from CPH waste and kappa-carrageenan formulations on bioplastic properties. The cellulose was isolated through a delignification and bleaching process, while the bioplastics were prepared by varying the ratios of cellulose and kappa-carrageenan in six different formulations. The resulting films were evaluated for their physical, mechanical, and barrier properties, as well as their stability and biodegradability. The ratio of cellulose to kappa-carrageenan significantly impacts the films’ properties. Significant improvements in tensile strength were observed in P5 (2 g cellulose, 8 g kappa-carrageenan) and P6 (10 g kappa-carrageenan), increasing by 79% and 240%, respectively, as the cellulose concentration decreased and kappa-carrageenan increased. However, the significant drawback in barrier properties was found in water vapor transmission rate (WVTR), with the higher kappa-carrageenan and lower cellulose concentrations films resulting in increased WVTR values by 13% (P5) and 17% (P6). The bioplastic with P1 (8 g cellulose, 2 g carrageenan), P2 (6 g cellulose, 4 g carrageenan), P3 (5 g cellulose, 5 g carrageenan), and P4 (4 g cellulose, 6 g carrageenan) formulations completely degraded in 3 weeks, while those with higher kappa-carrageenan content degraded faster, with P5 completely degrading in 2 weeks and P6 in 1 week. This study implies a potential reduction in environmental impact by replacing conventional plastics with the development of biodegradable materials derived from agricultural waste and promoting sustainable agricultural practices by utilizing CPH.
Keywords
Full Text:
PDFReferences
Abdullah, A. H. D., Firdiana, B., Nissa, R. C., Satoto, R., Karina, M., Fransiska, D., … & Ismadi. (2021). Effect of k-carrageenan on mechanical, thermal and biodegradable properties of starch–carboxymethyl cellulose (CMC) bioplastic. Cellulose Chemistry and Technology, 55(9–10), 1109–1117. https://doi.org/10.35812/CelluloseChemTechnol.2021.55.95
Abdullah, A. H. D., Putri, O. D., Fikriyyah, A. K., Nissa, R. C., & Intadiana, S. (2020). Effect of microcrystalline cellulose on characteristics of cassava starch-based bioplastic. Polymer-Plastics Technology and Materials, 59(12), 1250–1258. https://doi.org/10.1080/25740881.2020.1738465
Abe, M. M., Martins, J. R., Sanvezzo, P. B., Macedo, J. V., Branciforti, M. C., Halley, P., … & Brienzo, M. (2021). Advantages and disadvantages of bioplastics production from starch and lignocellulosic components. Polymers, 13(15), 2484. https://doi.org/10.3390/POLYM13152484
Adeleye, O. A., Bamiro, O. A., Albalawi, D. A., Alotaibi, A. S., Iqbal, H., Sanyaolu, S., … & Menaa, F. (2022). Characterizations of alpha-cellulose and microcrystalline cellulose isolated from cocoa pod husk as a potential pharmaceutical excipient. Materials, 15(17), 5992. https://doi.org/10.3390/ma15175992
Akhlaq, S., Singh, D., Mittal, N., & Siddiqui, M. H. (2023). A review on biodegradation of bioplastics in different environmental conditions. Polymer Science - Series B, 65(6), 733–745. https://doi.org/10.1134/S1560090424600128
Akshana, R. S., Sobini, N., Kirushanthi, T., & Srivijeindran, S. (2024). Synthesis of cellulose nano fiber from palmyrah fruit fiber and its applicability as a reinforcement agent on starch based biodegradable film. Ceylon Journal of Science, 53(3), 313–320. https://doi.org/10.4038/cjs.v53i3.8257
Arifin, H. R., Utaminingsih, F., Djali, M., Nurhadi, B., Lembong, E., & Marta, H. (2023). The role of virgin coconut oil in corn starch/NCC-based nanocomposite film matrix: Physical, mechanical, and water vapor transmission characteristics. Polymers, 15(15), 3239. https://doi.org/10.3390/polym15153239
Asim, N., Badiei, M., & Mohammad, M. (2021). Recent advances in cellulose-based hydrophobic food packaging. Emergent Materials, 5(3), 703–718. https://doi.org/10.1007/S42247-021-00314-2
ASTM. (2010). ASTM D882-02: Standard test method for tensile properties of thin plastic sheeting (ASTM D882-02). Pennsylvania: ASTM International. https://doi.org/10.1520/D0882-02
ASTM. (2017). ASTM E96-00: Standard test methods for water vapor transmission of materials (ASTM E96-00, Vol. 08). Pennsylvania: ASTM International. https://doi.org/10.1520/E0096-00
ASTM. (2021). ASTM D6988-21: Standard guide for determination of thickness of plastic film test specimens. Pennsylvania: ASTM International. https://doi.org/10.1520/D6988-21
ASTM. (2022). ASTM D570-22: Standard test method for water absorption of plastics. Pennsylvania: ASTM International. https://doi.org/10.1520/D0570-22
Bhat, K. M., Jyothsana, R., Sharma, A., & Rao, N. N. (2020). Carrageenan-based edible biodegradable food packaging: A review. International Journal of Food Science and Nutrition, 5(4), 69–75. Retrieved from https://www.foodsciencejournal.com/archives/2020/vol5/issue4/5-4-15
Bhatia, S., Abbas Shah, Y., Al-Harrasi, A., Jawad, M., Koca, E., & Aydemir, L. Y. (2024). Enhancing tensile strength, thermal stability, and antioxidant characteristics of transparent kappa carrageenan films using grapefruit essential oil for food packaging applications. ACS Omega, 9(8), 9003–9012. https://doi.org/10.1021/acsomega.3c07366
Bilo, F., Pandini, S., Sartore, L., Depero, L. E., Gargiulo, G., Bonassi, A., … & Bontempi, E. (2018). A sustainable bioplastic obtained from rice straw. Journal of Cleaner Production, 200, 357–368. https://doi.org/10.1016/J.JCLEPRO.2018.07.252
Carrillo, S. A. A. R., Ruiz Olortino, G. P., Rafael Guevara, D. F., & Chinchay Gallardo, E. H. (2023). Bio-based carrageenan composite coatings for food packaging application. 21st LACCEI International Multi-Conference for Engineering, Education, and Technology, pp. 1–9. https://doi.org/10.18687/LACCEI2023.1.1.849
Carta, S., Nudda, A., Cappai, M. G., Lunesu, M. F., Atzori, A. S., Battacone, G., & Pulina, G. (2020). Short communication: Cocoa husks can effectively replace soybean hulls in dairy sheep diets—Effects on milk production traits and hematological parameters. Journal of Dairy Science, 103(2), 1553–1558. https://doi.org/10.3168/jds.2019-17550
Chawla, R., Sivakumar, S., & Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements-A review. Carbohydrate Polymer Technologies and Applications, 2, 100024. https://doi.org/10.1016/J.CARPTA.2020.100024
Daud, Z., Kassim, A. S. M., Aripin, A. M., Awang, H., & Hatta, M. Z. M. (2013). Chemical composition and morphological of cocoa pod husks and cassava peels for pulp and paper production. Australian Journal of Basic and Applied Sciences, 7(9), 406–411. Retrieved from http://ajbasweb.com/old/ajbas/2013/July/406-411.pdf
de Lima Barizão, C., Crepaldi, M. I., Junior, O. de O. S., de Oliveira, A. C., Martins, A. F., Garcia, P. S., & Bonafé, E. G. (2020). Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production costs. International Journal of Biological Macromolecules, 165, 582–590. https://doi.org/10.1016/J.IJBIOMAC.2020.09.150
Dey, S., Veerendra, G. T. N., Babu, P. S. S. A., Manoj, A. V. P., & Nagarjuna, K. (2023). Degradation of plastics waste and its effects on biological ecosystems: A scientific analysis and comprehensive review. Biomedical Materials & Devices, 2(1), 70–112. https://doi.org/10.1007/S44174-023-00085-W
Dmitrenko, M., Kuzminova, A., Cherian, R. M., Joshy, K. S., Pasquini, D., John, M. J., … & Penkova, A. (2023). Edible carrageenan films reinforced with starch and nanocellulose: Development and characterization. Sustainability (Switzerland), 15(22), 15817. https://doi.org/10.3390/su152215817
Dogaru, B. I., Simionescu, B., & Popescu, M. C. (2020). Synthesis and characterization of κ-carrageenan bio-nanocomposite films reinforced with bentonite nanoclay. International Journal of Biological Macromolecules, 154, 9–17. https://doi.org/10.1016/j.ijbiomac.2020.03.088
El Halal, S. L. M., Colussi, R., Deon, V. G., Pinto, V. Z., Villanova, F. A., Carreño, N. L. V., … & Zavareze, E. D. R. (2015). Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, 133, 644–653. https://doi.org/10.1016/J.CARBPOL.2015.07.024
Etale, A., Onyianta, A. J., Turner, S. R., & Eichhorn, S. J. (2023). Cellulose: A review of water interactions, applications in composites, and water treatment. Chemical Reviews, 123(5), 2016–2048. https://doi.org/10.1021/acs.chemrev.2c00477
Fadhallah, E. G., Zuidar, A. S., Dameswary, A. H., Assa’diyah, I. N., Juwita, N., Tullaila, S., & Yudistiro, M. K. K. (2024). Sustainable bioplastics made from cassava peel waste starch and carrageenan formulations: Synthesis and characterization. Molekul, 19(1), 36–45. https://doi.org/10.20884/1.jm.2024.19.1.8394
FAO. (2024). Indonesia: Upgrading bulk cocoa into fine cocoa. Food and Agriculture Organization. Retrieved from https://www.fao.org/one-country-one-priority-product/asia-pacific/good-practices/detail/indonesi-upgrading-bulk-cocoa-into-fine-cocoa/en
Favian, E., & Nugraheni, P. S. (2023). Effect of carrageenan addition on the characteristic of chitosan-based bioplastic. IOP Conference Series: Earth and Environmental Science, 1289(1), 012039. https://doi.org/10.1088/1755-1315/1289/1/012039
Fiqinanti, N., Zulferiyenni, Susilawati, & Nurainy, F. (2022). Characteristics of biodegradable film from the combination of rice bran and rice husk cellulose. Jurnal Agroindustri Berkelanjutan, 1(2), 283–292. https://doi.org/http://dx.doi.org/10.23960/jab.v1i2.6382
Gabriel, T., Belete, A., Syrowatka, F., Neubert, R. H. H., & Gebre-Mariam, T. (2020). Extraction and characterization of celluloses from various plant byproducts. International Journal of Biological Macromolecules, 158, 1248–1258. https://doi.org/10.1016/J.IJBIOMAC.2020.04.264
Gulzar, S., Balange, A. K., Nagarajarao, R. C., Zhao, Q., & Benjakul, S. (2022). Microcapsules of shrimp oil using kidney bean protein isolate and κ-carrageenan as wall materials with the aid of ultrasonication or high-pressure microfluidization: Characteristics and oxidative stability. Foods, 11(10), 1431. https://doi.org/10.3390/foods11101431
Hanry, E. L., & Surugau, N. (2020). Characteristics and properties of biofilms made from pure carrageenan powder and whole seaweed (Kappaphycus sp.). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 76(2), 99–110. https://doi.org/10.37934/arfmts.76.2.99110
Hasan, M., Zarlaida, F., Susilawati, D., Zulfadli, Nasir, M., & Hanum, L. (2021). Robust biodegradable chitosan film reinforced cellulose isolated from straw waste. Rasayan Journal of Chemistry, 14(3), 2147–2153. https://doi.org/10.31788/RJC.2021.1436377
Heriyanto, H., Kustiningsih, I., & Sari, D. K. (2018). The effect of temperature and time of extraction on the quality of semi refined carrageenan (SRC). MATEC Web of Conferences, 154, 01034. https://doi.org/10.1051/matecconf/201815401034
Hidayati, S., Zulferiyenni, Z., & Satyajaya, W. (2019). Optimization of biodegradable film from cellulosa of seaweed solid waste Eucheuma cottonii with addition of glycerol, chitosan, CMC and tapioca. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(2), 340–354. https://doi.org/10.17844/JPHPI.V22I2.27782
Iremiren, G. O., & Ipinmoroti, R. R. (2014). Effect of organic fertilizer (cocoa pod husk) on okra and maize production under okra/maize intercrop in Uhonmora, Edo State, Nigeria. African Journal of Agricultural Research, 9(52), 3789–3796. https://doi.org/10.5897/AJAR2014.8596
Jacoeb, A. M., Nugraha, R., & Utari, S. P. S. D. (2014). Preparation of edible film from lindur fruit starch with the addition of glycerol and carrageenan. Jurnal Pengolahan Hasil Perikanan Indonesia, 17(1), 14–21. https://doi.org/10.17844/jphpi.v17i1.8132
Karaca, A. E., Özel, C., Özarslan, A. C., & Yücel, S. (2022). The simultaneous extraction of cellulose fiber and crystal biogenic silica from the same rice husk and evaluation in cellulose-based composite bioplastic films. Polymer Composites, 43(10), 6838–6853. https://doi.org/10.1002/PC.26729
Kassab, Z., Aziz, F., Hannache, H., Ben Youcef, H., & El Achaby, M. (2019). Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals. International Journal of Biological Macromolecules, 123, 1248–1256. https://doi.org/10.1016/J.IJBIOMAC.2018.12.030
Kumari, S., Rao, A., Kaur, M., & Dhania, G. (2023). Petroleum-based plastics versus bio-based plastics: A review. Nature Environment and Pollution Technology, 22(3), 1111–1124. https://doi.org/10.46488/NEPT.2023.v22i03.003
Maulida, Maysarah, S., & Jose. (2020). Utilization of cocoa (Theobroma cacao L.) pod husk as fillers for bioplastic from jackfruit (Artocarpus heterophyllus) seed starch with ethylene glycol plasticizer. IOP Conference Series: Materials Science and Engineering, 801(1), 012084. https://doi.org/10.1088/1757-899X/801/1/012084
Moustafa, M., Abu-Saied, M. A., Taha, T. H., Elnouby, M., El Desouky, E. A., Alamri, S., … & Al-Emam, A. (2021). Preparation and characterization of super-absorbing gel formulated from κ-carrageenan–potato peel starch blended polymers. Polymers, 13(24), 4308. https://doi.org/10.3390/polym13244308
Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(5), 1328–1333. https://doi.org/10.1016/J.FOODHYD.2008.09.002
Muthukumar, J., Chidambaram, R., & Sukumaran, S. (2021). Sulfated polysaccharides and its commercial applications in food industries—A review. Journal of Food Science and Technology, 58(7), 2453–2466. https://doi.org/10.1007/S13197-020-04837-0
Nugroho, A. D. (2024). Impact of agricultural technical efficiency on farm-gate emission: An implementation of environmental Kuznets Curve in Asian developing countries. Caraka Tani: Journal of Sustainable Agriculture, 39(2), 269–280. https://doi.org/10.20961/carakatani.v39i2.84098
Ouattara, L. Y., AppiahKouassi, E. K., Soro, D., Soro, Y., Yao, K. B., Adouby, K., … & Aina, P. M. (2020). Cocoa pod husks as potential sources of renewable high-value-added products: A review of current valorizations and future prospects. Bioresources, 16(1), 1988–2020. https://doi.org/10.15376/biores.16.1.Ouattara
Petkoska, A. T., Daniloski, D., D’Cunha, N. M., Naumovski, N., & Broach, A. T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Research International, 140, 109981. https://doi.org/10.1016/J.FOODRES.2020.109981
Pilapitiya, P. G. C. N. T., & Ratnayake, A. S. (2024). The world of plastic waste: A review. Cleaner Materials, 11, 100220. https://doi.org/10.1016/j.clema.2024.100220
Pooja, N., Chakraborty, I., Rahman, M. H., & Mazumder, N. (2023). An insight on sources and biodegradation of bioplastics: A review. 3 Biotech, 13(7), 1–22. https://doi.org/10.1007/S13205-023-03638-4
Rajasekar, V., Karthickumar, P., Rose, A. H. R., Manimmehalai, N., & Subhasri, D. (2023). Development and characterization of biodegradable film from marine red seaweed (Kappaphycus alvarezii). Pigment and Resin Technology, 52(4), 478–489. https://doi.org/10.1108/PRT-09-2021-0119
Rendón-Villalobos, R., Lorenzo-Santiago, M. A., Olvera-Guerra, R., & Trujillo-Hernández, C. A. (2022). Bioplastic composed of starch and micro-cellulose from waste mango: Mechanical properties and biodegradation. Polimeros, 32(3), e2022026. https://doi.org/10.1590/0104-1428.20210031
Richert, A., Olewnik-Kruszkowska, E., & Tarach, I. (2018). Growth of selected fungi on biodegradable films. Ecological Questions, 29(4), 63–68. https://doi.org/10.12775/EQ.2018.030
Rohadi, T. N. T., Ridzuan, M. J. M., Abdul Majid, M. S., Mamat, N., & Sulaiman, M. H. (2022). Influence of cellulose filler extracted from Napier grass on thermal characterizations, moisture content, tensile strength, biodegradation, and morphological structure of bioplastic films. Journal of Natural Fibers, 19(16), 12760–12771. https://doi.org/10.1080/15440478.2022.2073508
Rumi, S. S., Liyanage, S., & Abidi, N. (2024). Soil burial-induced degradation of cellulose films in a moisture-controlled environment. Scientific Reports, 14(1), 1–14. https://doi.org/10.1038/s41598-024-57436-w
Santos, C., Ramos, A., Luís, Â., & Amaral, M. E. (2023). Production and characterization of k-carrageenan films incorporating Cymbopogon winterianus essential oil as new food packaging materials. Foods, 12(11), 2169. https://doi.org/10.3390/foods12112169
Saputri, C. A., Julyatmojo, F. A., Harmiansyah, Febrina, M., Mahardika, M., & Maulana, S. (2024). Characteristics of bioplastics prepared from cassava starch reinforced with banana bunch cellulose at various concentrations. IOP Conference Series: Earth and Environmental Science, 1309, 012006. https://dx.doi.org/10.1088/1755-1315/1309/1/012006
Sena, P. W., Putra, G. P. G., & Suhendra, L. (2021). Characterization of cellulose from cocoa pod husk (Theobroma cacao L.) on various concentration of hydrogen peroxide and bleaching temperature. Jurnal Rekayasa dan Manajemen Agroindustri, 9(3), 288–299. https://doi.org/10.24843/jrma.2021.v09.i03.p03
Shahidi, F., & Hossain, A. (2022). Preservation of aquatic food using edible films and coatings containing essential oils: A review. Critical Reviews in Food Science and Nutrition, 62(1), 66–105. https://doi.org/10.1080/10408398.2020.1812048
Shang, X., Jiang, H., Wang, Q., Liu, P., & Xie, F. (2019). Cellulose-starch hybrid films plasticized by aqueous ZnCl2 solution. International Journal of Molecular Sciences, 20(3), 474. https://doi.org/10.3390/ijms20030474
Singh, N., Ogunseitan, O. A., Wong, M. H., & Tang, Y. (2022). Sustainable materials alternative to petrochemical plastics pollution: A review analysis. Sustainable Horizons, 2, 100016. https://doi.org/10.1016/J.HORIZ.2022.100016
Sofianto, R. A., Alamsjah, M. A., & Pujiastuti, D. Y. (2022). Application of modified starch on plastic bag bioplastic based on carrageenan from Eucheuma cottonii on mechanic and biodegradation properties. IOP Conference Series: Earth and Environmental Science, 1036(1), 012033. https://doi.org/10.1088/1755-1315/1036/1/012033
Suleman, R., Amjad, A., Ismail, A., Javed, S., Ghafoor, U., & Fahad, S. (2022). Impact of plastic bags usage in food commodities: An irreversible loss to environment. Environmental Science and Pollution Research, 29(33), 49483–49489. https://doi.org/10.1007/s11356-022-21091-3
Sunardi, S., Firda Trianda, N., & Irawati, U. (2020). The effect of nanocellulose from Nipah leaf stems as filler on the properties of polyvinyl alcohol bioplastic. Justek : Jurnal Sains dan Teknologi, 3(2), 69–76. https://doi.org/10.31764/justek.v3i2.3704
Tasende, M. G., & Manríquez-Hernández, J. A. (2016). Carrageenan properties and applications: A review. Carrageenans: Sources and Extraction Methods, Molecular Structure, Bioactive Properties and Health Effects, pp. 17–49. Retrieved from https://www.researchgate.net/publication/307856589
Utami, R., Kawiji, K., Atmaka, W., Nurmaya, L., Khasanah, L. U., & Manuhara, G. J. (2021). The effect of active paper packaging enriched with oleoresin from solid waste of pressed Curcuma xanthorrhiza Roxb. placement methods on quality of refrigerated strawberry (Fragaria x ananassa). Caraka Tani: Journal of Sustainable Agriculture, 36(1), 155. https://doi.org/10.20961/carakatani.v36i1.43027
Yahaya, W. A. W., Azman, N. A. M., Adam, F., Subramaniam, S. D., Abd Hamid, K. H., & Almajano, M. P. (2023). Exploring the potential of seaweed derivatives for the development of biodegradable plastics: A comparative study. Polymers, 15(13), 2884. https://doi.org/10.3390/polym15132884
Zamanian, M., Sadrnia, H., Khojastehpour, M., Hosseini, F., Kruczek, B., & Thibault, J. (2021). Barrier properties of PVA/TiO2/MMT mixed-matrix membranes for food packaging. Journal of Polymers and the Environment, 29(5), 1396–1411. https://doi.org/10.1007/s10924-020-01965-8
Refbacks
- There are currently no refbacks.