Development of Sustainable Bioplastic Composite Films from Cocoa Pod Husk Waste Cellulose and Kappa-Carrageenan

Esa Ghanim Fadhallah, Ahmad Sapta Zuidar, Sri Hidayati, Haidawati Haidawati, Amarilia Harsanti Dameswary, Aisyah Tri Ramadhani

Abstract

Cocoa pod husk (CPH), typically considered agricultural waste, contains cellulose suitable for bioplastic production, offering a sustainable alternative to synthetic plastics. Its reinforcement with kappa-carrageenan is designed to improve the properties of cellulose-based bioplastics while reducing agricultural waste. This study evaluates the effects of cellulose from CPH waste and kappa-carrageenan formulations on bioplastic properties. The cellulose was isolated through a delignification and bleaching process, while the bioplastics were prepared by varying the ratios of cellulose and kappa-carrageenan in six different formulations. The resulting films were evaluated for their physical, mechanical, and barrier properties, as well as their stability and biodegradability. The ratio of cellulose to kappa-carrageenan significantly impacts the films’ properties. Significant improvements in tensile strength were observed in P5 (2 g cellulose, 8 g kappa-carrageenan) and P6 (10 g kappa-carrageenan), increasing by 79% and 240%, respectively, as the cellulose concentration decreased and kappa-carrageenan increased. However, the significant drawback in barrier properties was found in water vapor transmission rate (WVTR), with the higher kappa-carrageenan and lower cellulose concentrations films resulting in increased WVTR values by 13% (P5) and 17% (P6). The bioplastic with P1 (8 g cellulose, 2 g carrageenan), P2 (6 g cellulose, 4 g carrageenan), P3 (5 g cellulose, 5 g carrageenan), and P4 (4 g cellulose, 6 g carrageenan) formulations completely degraded in 3 weeks, while those with higher kappa-carrageenan content degraded faster, with P5 completely degrading in 2 weeks and P6 in 1 week. This study implies a potential reduction in environmental impact by replacing conventional plastics with the development of biodegradable materials derived from agricultural waste and promoting sustainable agricultural practices by utilizing CPH.

Keywords

biodegradability; food packaging; mechanical properties

Full Text:

PDF

References

Abdullah, A. H. D., Firdiana, B., Nissa, R. C., Satoto, R., Karina, M., Fransiska, D., … & Ismadi. (2021). Effect of k-carrageenan on mechanical, thermal and biodegradable properties of starch–carboxymethyl cellulose (CMC) bioplastic. Cellulose Chemistry and Technology, 55(9–10), 1109–1117. https://doi.org/10.35812/CelluloseChemTechnol.2021.55.95

Abdullah, A. H. D., Putri, O. D., Fikriyyah, A. K., Nissa, R. C., & Intadiana, S. (2020). Effect of microcrystalline cellulose on characteristics of cassava starch-based bioplastic. Polymer-Plastics Technology and Materials, 59(12), 1250–1258. https://doi.org/10.1080/25740881.2020.1738465

Abe, M. M., Martins, J. R., Sanvezzo, P. B., Macedo, J. V., Branciforti, M. C., Halley, P., … & Brienzo, M. (2021). Advantages and disadvantages of bioplastics production from starch and lignocellulosic components. Polymers, 13(15), 2484. https://doi.org/10.3390/POLYM13152484

Adeleye, O. A., Bamiro, O. A., Albalawi, D. A., Alotaibi, A. S., Iqbal, H., Sanyaolu, S., … & Menaa, F. (2022). Characterizations of alpha-cellulose and microcrystalline cellulose isolated from cocoa pod husk as a potential pharmaceutical excipient. Materials, 15(17), 5992. https://doi.org/10.3390/ma15175992

Akhlaq, S., Singh, D., Mittal, N., & Siddiqui, M. H. (2023). A review on biodegradation of bioplastics in different environmental conditions. Polymer Science - Series B, 65(6), 733–745. https://doi.org/10.1134/S1560090424600128

Akshana, R. S., Sobini, N., Kirushanthi, T., & Srivijeindran, S. (2024). Synthesis of cellulose nano fiber from palmyrah fruit fiber and its applicability as a reinforcement agent on starch based biodegradable film. Ceylon Journal of Science, 53(3), 313–320. https://doi.org/10.4038/cjs.v53i3.8257

Arifin, H. R., Utaminingsih, F., Djali, M., Nurhadi, B., Lembong, E., & Marta, H. (2023). The role of virgin coconut oil in corn starch/NCC-based nanocomposite film matrix: Physical, mechanical, and water vapor transmission characteristics. Polymers, 15(15), 3239. https://doi.org/10.3390/polym15153239

Asim, N., Badiei, M., & Mohammad, M. (2021). Recent advances in cellulose-based hydrophobic food packaging. Emergent Materials, 5(3), 703–718. https://doi.org/10.1007/S42247-021-00314-2

ASTM. (2010). ASTM D882-02: Standard test method for tensile properties of thin plastic sheeting (ASTM D882-02). Pennsylvania: ASTM International. https://doi.org/10.1520/D0882-02

ASTM. (2017). ASTM E96-00: Standard test methods for water vapor transmission of materials (ASTM E96-00, Vol. 08). Pennsylvania: ASTM International. https://doi.org/10.1520/E0096-00

ASTM. (2021). ASTM D6988-21: Standard guide for determination of thickness of plastic film test specimens. Pennsylvania: ASTM International. https://doi.org/10.1520/D6988-21

ASTM. (2022). ASTM D570-22: Standard test method for water absorption of plastics. Pennsylvania: ASTM International. https://doi.org/10.1520/D0570-22

Bhat, K. M., Jyothsana, R., Sharma, A., & Rao, N. N. (2020). Carrageenan-based edible biodegradable food packaging: A review. International Journal of Food Science and Nutrition, 5(4), 69–75. Retrieved from https://www.foodsciencejournal.com/archives/2020/vol5/issue4/5-4-15

Bhatia, S., Abbas Shah, Y., Al-Harrasi, A., Jawad, M., Koca, E., & Aydemir, L. Y. (2024). Enhancing tensile strength, thermal stability, and antioxidant characteristics of transparent kappa carrageenan films using grapefruit essential oil for food packaging applications. ACS Omega, 9(8), 9003–9012. https://doi.org/10.1021/acsomega.3c07366

Bilo, F., Pandini, S., Sartore, L., Depero, L. E., Gargiulo, G., Bonassi, A., … & Bontempi, E. (2018). A sustainable bioplastic obtained from rice straw. Journal of Cleaner Production, 200, 357–368. https://doi.org/10.1016/J.JCLEPRO.2018.07.252

Carrillo, S. A. A. R., Ruiz Olortino, G. P., Rafael Guevara, D. F., & Chinchay Gallardo, E. H. (2023). Bio-based carrageenan composite coatings for food packaging application. 21st LACCEI International Multi-Conference for Engineering, Education, and Technology, pp. 1–9. https://doi.org/10.18687/LACCEI2023.1.1.849

Carta, S., Nudda, A., Cappai, M. G., Lunesu, M. F., Atzori, A. S., Battacone, G., & Pulina, G. (2020). Short communication: Cocoa husks can effectively replace soybean hulls in dairy sheep diets—Effects on milk production traits and hematological parameters. Journal of Dairy Science, 103(2), 1553–1558. https://doi.org/10.3168/jds.2019-17550

Chawla, R., Sivakumar, S., & Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements-A review. Carbohydrate Polymer Technologies and Applications, 2, 100024. https://doi.org/10.1016/J.CARPTA.2020.100024

Daud, Z., Kassim, A. S. M., Aripin, A. M., Awang, H., & Hatta, M. Z. M. (2013). Chemical composition and morphological of cocoa pod husks and cassava peels for pulp and paper production. Australian Journal of Basic and Applied Sciences, 7(9), 406–411. Retrieved from http://ajbasweb.com/old/ajbas/2013/July/406-411.pdf

de Lima Barizão, C., Crepaldi, M. I., Junior, O. de O. S., de Oliveira, A. C., Martins, A. F., Garcia, P. S., & Bonafé, E. G. (2020). Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production costs. International Journal of Biological Macromolecules, 165, 582–590. https://doi.org/10.1016/J.IJBIOMAC.2020.09.150

Dey, S., Veerendra, G. T. N., Babu, P. S. S. A., Manoj, A. V. P., & Nagarjuna, K. (2023). Degradation of plastics waste and its effects on biological ecosystems: A scientific analysis and comprehensive review. Biomedical Materials & Devices, 2(1), 70–112. https://doi.org/10.1007/S44174-023-00085-W

Dmitrenko, M., Kuzminova, A., Cherian, R. M., Joshy, K. S., Pasquini, D., John, M. J., … & Penkova, A. (2023). Edible carrageenan films reinforced with starch and nanocellulose: Development and characterization. Sustainability (Switzerland), 15(22), 15817. https://doi.org/10.3390/su152215817

Dogaru, B. I., Simionescu, B., & Popescu, M. C. (2020). Synthesis and characterization of κ-carrageenan bio-nanocomposite films reinforced with bentonite nanoclay. International Journal of Biological Macromolecules, 154, 9–17. https://doi.org/10.1016/j.ijbiomac.2020.03.088

El Halal, S. L. M., Colussi, R., Deon, V. G., Pinto, V. Z., Villanova, F. A., Carreño, N. L. V., … & Zavareze, E. D. R. (2015). Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, 133, 644–653. https://doi.org/10.1016/J.CARBPOL.2015.07.024

Etale, A., Onyianta, A. J., Turner, S. R., & Eichhorn, S. J. (2023). Cellulose: A review of water interactions, applications in composites, and water treatment. Chemical Reviews, 123(5), 2016–2048. https://doi.org/10.1021/acs.chemrev.2c00477

Fadhallah, E. G., Zuidar, A. S., Dameswary, A. H., Assa’diyah, I. N., Juwita, N., Tullaila, S., & Yudistiro, M. K. K. (2024). Sustainable bioplastics made from cassava peel waste starch and carrageenan formulations: Synthesis and characterization. Molekul, 19(1), 36–45. https://doi.org/10.20884/1.jm.2024.19.1.8394

FAO. (2024). Indonesia: Upgrading bulk cocoa into fine cocoa. Food and Agriculture Organization. Retrieved from https://www.fao.org/one-country-one-priority-product/asia-pacific/good-practices/detail/indonesi-upgrading-bulk-cocoa-into-fine-cocoa/en

Favian, E., & Nugraheni, P. S. (2023). Effect of carrageenan addition on the characteristic of chitosan-based bioplastic. IOP Conference Series: Earth and Environmental Science, 1289(1), 012039. https://doi.org/10.1088/1755-1315/1289/1/012039

Fiqinanti, N., Zulferiyenni, Susilawati, & Nurainy, F. (2022). Characteristics of biodegradable film from the combination of rice bran and rice husk cellulose. Jurnal Agroindustri Berkelanjutan, 1(2), 283–292. https://doi.org/http://dx.doi.org/10.23960/jab.v1i2.6382

Gabriel, T., Belete, A., Syrowatka, F., Neubert, R. H. H., & Gebre-Mariam, T. (2020). Extraction and characterization of celluloses from various plant byproducts. International Journal of Biological Macromolecules, 158, 1248–1258. https://doi.org/10.1016/J.IJBIOMAC.2020.04.264

Gulzar, S., Balange, A. K., Nagarajarao, R. C., Zhao, Q., & Benjakul, S. (2022). Microcapsules of shrimp oil using kidney bean protein isolate and κ-carrageenan as wall materials with the aid of ultrasonication or high-pressure microfluidization: Characteristics and oxidative stability. Foods, 11(10), 1431. https://doi.org/10.3390/foods11101431

Hanry, E. L., & Surugau, N. (2020). Characteristics and properties of biofilms made from pure carrageenan powder and whole seaweed (Kappaphycus sp.). Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 76(2), 99–110. https://doi.org/10.37934/arfmts.76.2.99110

Hasan, M., Zarlaida, F., Susilawati, D., Zulfadli, Nasir, M., & Hanum, L. (2021). Robust biodegradable chitosan film reinforced cellulose isolated from straw waste. Rasayan Journal of Chemistry, 14(3), 2147–2153. https://doi.org/10.31788/RJC.2021.1436377

Heriyanto, H., Kustiningsih, I., & Sari, D. K. (2018). The effect of temperature and time of extraction on the quality of semi refined carrageenan (SRC). MATEC Web of Conferences, 154, 01034. https://doi.org/10.1051/matecconf/201815401034

Hidayati, S., Zulferiyenni, Z., & Satyajaya, W. (2019). Optimization of biodegradable film from cellulosa of seaweed solid waste Eucheuma cottonii with addition of glycerol, chitosan, CMC and tapioca. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(2), 340–354. https://doi.org/10.17844/JPHPI.V22I2.27782

Iremiren, G. O., & Ipinmoroti, R. R. (2014). Effect of organic fertilizer (cocoa pod husk) on okra and maize production under okra/maize intercrop in Uhonmora, Edo State, Nigeria. African Journal of Agricultural Research, 9(52), 3789–3796. https://doi.org/10.5897/AJAR2014.8596

Jacoeb, A. M., Nugraha, R., & Utari, S. P. S. D. (2014). Preparation of edible film from lindur fruit starch with the addition of glycerol and carrageenan. Jurnal Pengolahan Hasil Perikanan Indonesia, 17(1), 14–21. https://doi.org/10.17844/jphpi.v17i1.8132

Karaca, A. E., Özel, C., Özarslan, A. C., & Yücel, S. (2022). The simultaneous extraction of cellulose fiber and crystal biogenic silica from the same rice husk and evaluation in cellulose-based composite bioplastic films. Polymer Composites, 43(10), 6838–6853. https://doi.org/10.1002/PC.26729

Kassab, Z., Aziz, F., Hannache, H., Ben Youcef, H., & El Achaby, M. (2019). Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals. International Journal of Biological Macromolecules, 123, 1248–1256. https://doi.org/10.1016/J.IJBIOMAC.2018.12.030

Kumari, S., Rao, A., Kaur, M., & Dhania, G. (2023). Petroleum-based plastics versus bio-based plastics: A review. Nature Environment and Pollution Technology, 22(3), 1111–1124. https://doi.org/10.46488/NEPT.2023.v22i03.003

Maulida, Maysarah, S., & Jose. (2020). Utilization of cocoa (Theobroma cacao L.) pod husk as fillers for bioplastic from jackfruit (Artocarpus heterophyllus) seed starch with ethylene glycol plasticizer. IOP Conference Series: Materials Science and Engineering, 801(1), 012084. https://doi.org/10.1088/1757-899X/801/1/012084

Moustafa, M., Abu-Saied, M. A., Taha, T. H., Elnouby, M., El Desouky, E. A., Alamri, S., … & Al-Emam, A. (2021). Preparation and characterization of super-absorbing gel formulated from κ-carrageenan–potato peel starch blended polymers. Polymers, 13(24), 4308. https://doi.org/10.3390/polym13244308

Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(5), 1328–1333. https://doi.org/10.1016/J.FOODHYD.2008.09.002

Muthukumar, J., Chidambaram, R., & Sukumaran, S. (2021). Sulfated polysaccharides and its commercial applications in food industries—A review. Journal of Food Science and Technology, 58(7), 2453–2466. https://doi.org/10.1007/S13197-020-04837-0

Nugroho, A. D. (2024). Impact of agricultural technical efficiency on farm-gate emission: An implementation of environmental Kuznets Curve in Asian developing countries. Caraka Tani: Journal of Sustainable Agriculture, 39(2), 269–280. https://doi.org/10.20961/carakatani.v39i2.84098

Ouattara, L. Y., AppiahKouassi, E. K., Soro, D., Soro, Y., Yao, K. B., Adouby, K., … & Aina, P. M. (2020). Cocoa pod husks as potential sources of renewable high-value-added products: A review of current valorizations and future prospects. Bioresources, 16(1), 1988–2020. https://doi.org/10.15376/biores.16.1.Ouattara

Petkoska, A. T., Daniloski, D., D’Cunha, N. M., Naumovski, N., & Broach, A. T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Research International, 140, 109981. https://doi.org/10.1016/J.FOODRES.2020.109981

Pilapitiya, P. G. C. N. T., & Ratnayake, A. S. (2024). The world of plastic waste: A review. Cleaner Materials, 11, 100220. https://doi.org/10.1016/j.clema.2024.100220

Pooja, N., Chakraborty, I., Rahman, M. H., & Mazumder, N. (2023). An insight on sources and biodegradation of bioplastics: A review. 3 Biotech, 13(7), 1–22. https://doi.org/10.1007/S13205-023-03638-4

Rajasekar, V., Karthickumar, P., Rose, A. H. R., Manimmehalai, N., & Subhasri, D. (2023). Development and characterization of biodegradable film from marine red seaweed (Kappaphycus alvarezii). Pigment and Resin Technology, 52(4), 478–489. https://doi.org/10.1108/PRT-09-2021-0119

Rendón-Villalobos, R., Lorenzo-Santiago, M. A., Olvera-Guerra, R., & Trujillo-Hernández, C. A. (2022). Bioplastic composed of starch and micro-cellulose from waste mango: Mechanical properties and biodegradation. Polimeros, 32(3), e2022026. https://doi.org/10.1590/0104-1428.20210031

Richert, A., Olewnik-Kruszkowska, E., & Tarach, I. (2018). Growth of selected fungi on biodegradable films. Ecological Questions, 29(4), 63–68. https://doi.org/10.12775/EQ.2018.030

Rohadi, T. N. T., Ridzuan, M. J. M., Abdul Majid, M. S., Mamat, N., & Sulaiman, M. H. (2022). Influence of cellulose filler extracted from Napier grass on thermal characterizations, moisture content, tensile strength, biodegradation, and morphological structure of bioplastic films. Journal of Natural Fibers, 19(16), 12760–12771. https://doi.org/10.1080/15440478.2022.2073508

Rumi, S. S., Liyanage, S., & Abidi, N. (2024). Soil burial-induced degradation of cellulose films in a moisture-controlled environment. Scientific Reports, 14(1), 1–14. https://doi.org/10.1038/s41598-024-57436-w

Santos, C., Ramos, A., Luís, Â., & Amaral, M. E. (2023). Production and characterization of k-carrageenan films incorporating Cymbopogon winterianus essential oil as new food packaging materials. Foods, 12(11), 2169. https://doi.org/10.3390/foods12112169

Saputri, C. A., Julyatmojo, F. A., Harmiansyah, Febrina, M., Mahardika, M., & Maulana, S. (2024). Characteristics of bioplastics prepared from cassava starch reinforced with banana bunch cellulose at various concentrations. IOP Conference Series: Earth and Environmental Science, 1309, 012006. https://dx.doi.org/10.1088/1755-1315/1309/1/012006

Sena, P. W., Putra, G. P. G., & Suhendra, L. (2021). Characterization of cellulose from cocoa pod husk (Theobroma cacao L.) on various concentration of hydrogen peroxide and bleaching temperature. Jurnal Rekayasa dan Manajemen Agroindustri, 9(3), 288–299. https://doi.org/10.24843/jrma.2021.v09.i03.p03

Shahidi, F., & Hossain, A. (2022). Preservation of aquatic food using edible films and coatings containing essential oils: A review. Critical Reviews in Food Science and Nutrition, 62(1), 66–105. https://doi.org/10.1080/10408398.2020.1812048

Shang, X., Jiang, H., Wang, Q., Liu, P., & Xie, F. (2019). Cellulose-starch hybrid films plasticized by aqueous ZnCl2 solution. International Journal of Molecular Sciences, 20(3), 474. https://doi.org/10.3390/ijms20030474

Singh, N., Ogunseitan, O. A., Wong, M. H., & Tang, Y. (2022). Sustainable materials alternative to petrochemical plastics pollution: A review analysis. Sustainable Horizons, 2, 100016. https://doi.org/10.1016/J.HORIZ.2022.100016

Sofianto, R. A., Alamsjah, M. A., & Pujiastuti, D. Y. (2022). Application of modified starch on plastic bag bioplastic based on carrageenan from Eucheuma cottonii on mechanic and biodegradation properties. IOP Conference Series: Earth and Environmental Science, 1036(1), 012033. https://doi.org/10.1088/1755-1315/1036/1/012033

Suleman, R., Amjad, A., Ismail, A., Javed, S., Ghafoor, U., & Fahad, S. (2022). Impact of plastic bags usage in food commodities: An irreversible loss to environment. Environmental Science and Pollution Research, 29(33), 49483–49489. https://doi.org/10.1007/s11356-022-21091-3

Sunardi, S., Firda Trianda, N., & Irawati, U. (2020). The effect of nanocellulose from Nipah leaf stems as filler on the properties of polyvinyl alcohol bioplastic. Justek : Jurnal Sains dan Teknologi, 3(2), 69–76. https://doi.org/10.31764/justek.v3i2.3704

Tasende, M. G., & Manríquez-Hernández, J. A. (2016). Carrageenan properties and applications: A review. Carrageenans: Sources and Extraction Methods, Molecular Structure, Bioactive Properties and Health Effects, pp. 17–49. Retrieved from https://www.researchgate.net/publication/307856589

Utami, R., Kawiji, K., Atmaka, W., Nurmaya, L., Khasanah, L. U., & Manuhara, G. J. (2021). The effect of active paper packaging enriched with oleoresin from solid waste of pressed Curcuma xanthorrhiza Roxb. placement methods on quality of refrigerated strawberry (Fragaria x ananassa). Caraka Tani: Journal of Sustainable Agriculture, 36(1), 155. https://doi.org/10.20961/carakatani.v36i1.43027

Yahaya, W. A. W., Azman, N. A. M., Adam, F., Subramaniam, S. D., Abd Hamid, K. H., & Almajano, M. P. (2023). Exploring the potential of seaweed derivatives for the development of biodegradable plastics: A comparative study. Polymers, 15(13), 2884. https://doi.org/10.3390/polym15132884

Zamanian, M., Sadrnia, H., Khojastehpour, M., Hosseini, F., Kruczek, B., & Thibault, J. (2021). Barrier properties of PVA/TiO2/MMT mixed-matrix membranes for food packaging. Journal of Polymers and the Environment, 29(5), 1396–1411. https://doi.org/10.1007/s10924-020-01965-8

Refbacks

  • There are currently no refbacks.