The Optimization of Biosilica and Humic Acid to Increase Soil Nutrient Availability and Nutrient Uptake in Rice Plant in Sandy Soil

Wanti Mindari, M. Ghufron Chakim, Bakti Wisnu Widjajani, Purnomo Edi Sasongko, Haidar Fari Aditya, Ahmad Mustapha Mohamad Pazi, Seca Gandaseca

Abstract

Nutrients in sandy soil are limited due to low absorption capacity and are easily leached or evaporated. Biosilica and humic acid extracted from compost and husk ash can improve the soil structure and absorption capacity to optimize the availability and uptake of nutrients. Therefore, this research aims to examine the optimal application dose of biosilica and humic acid to improve the chemical properties of soil with a sandy texture. The experiment was structured based on a completely randomized design (CRD). Factor 1 consisted of biosilica doses of 0, 0.5, 1.0, and 1.5 tons ha-1, while factor 2 comprised humic acid doses of 0, 20, 40, and 60 kg ha-1. Data analysis was performed using ANOVA, followed by Tukey’s Honest Significant Difference (HSD) test, correlation, and determination analysis. The study results indicate that the combination of biosilica and humic acid contributes to the changes in nutrient availability. The impact of the treatment was observed 90 days after application on the parameters of soil pH, organic C, total N, and exchangeable K. The effects of the treatment were also evident in plant nutrient uptake, specifically in total N in the roots and total K in the stems. The optimal combination for improving soil nutrient availability and nutrient uptake in plant tissues was a biosilica dose of 1.0 tons ha-1 (S2) and humic acid at 40 kg ha-1 (H2).

Keywords

chelate; leaching; nutrient uptake; paddy soil; soil amendment

Full Text:

PDF

References

Aditya, H. F., Gandaseca, S., Rayes, M. L., Karam, D. S., Prayogo, C., & Nugroho, G. A. (2020). Characterization, changes in soil properties and vegetation distribution as affected by topography in Ayer Hitam Forest Reserve, Selangor, Peninsular Malaysia. AGRIVITA Journal of Agricultural Science, 42(3), 548–562. https://doi.org/10.17503/agrivita.v42i3.2617

Adrees, M., Ali, S., Rizwan, M., Zia-ur-rehman, M., Ibrahim, M., Abbas, F., … & Kashif, M. (2015). Ecotoxicology and environmental safety mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants : A review. Ecotoxicology and Environmental Safety, 119, 186–197. https://doi.org/10.1016/j.ecoenv.2015.05.011

Akimbekov, N. S., Digel, I., Tastambek, K. T., Sherelkhan, D. K., Jussupova, D. B., & Altynbay, N. P. (2021). Low-rank coal as a source of humic substances for soil amendment and fertility management. Agriculture, 11(12), 1261. https://doi.org/10.3390/agriculture11121261

Ali, M., & A-Ali Drea, A. (2021). Green synthesis and characterization of antibiotic amorphous nano silicon oxide powder extracted from rice husk ash. International Journal of Current Research and Review, 13(24), 94–99. https://doi.org/10.31782/ijcrr.2021.132406

Amoakwah, E., Shim, J., Kim, S., Lee, Y., Kwon, S., Sangho, J., & Park, S. (2023). Impact of silicate and lime application on soil fertility and temporal changes in soil properties and carbon stocks in a temperate ecosystem. Geoderma, 433, 116431. https://doi.org/10.1016/j.geoderma.2023.116431

Anggraini, L., Hendriawan, R. A., Anggraina, P. L., & Hakiki, R. (2022). Homogenization of green SiO2 from rice husk burn through potassium hydroxide solid-liquid extraction. Journal of Physics: Conference Series, 2312(1), 012034. https://doi.org/10.1088/1742-6596/2312/1/012034

Bakri, I., Thaha, A. R., & Isrun, I. (2016). Status beberapa sifat kimia tanah pada berbagai penggunaan lahan di DAS Poboya Kecamatan Palu Selatan. AGROTEKBIS: JURNAL ILMU PERTANIAN (e-journal), 4(5), 512–520. Retrieved from http://jurnal.faperta.untad.ac.id/index.php/agrotekbis/article/view/53

Bakhat, H. F., Bibi, N., Zia, Z., Abbas, S., Hammad, H. M., Fahad, S., … & Saeed, S. (2018). Silicon mitigates biotic stresses in crop plants: A review. Crop Protection, 104, 21–34. https://doi.org/10.1016/j.cropro.2017.10.008

Bakhsh, E. M., Khan, S. B., Akhtar, K., Danish, E. Y., Fagieh, T. M., Qiu, C., Sun, Y., Romanovski, V., & Su, X. (2022). Simultaneous preparation of humic acid and mesoporous silica from municipal sludge and their adsorption properties for U (VI). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 647, 129060. https://doi.org/10.1016/j.colsurfa.2022.129060

Bhat, M. M. U. R. (2019). Processed flyash geopolymer concrete and effects of MIRHA (microwave incinerated rice husk ash) on processed flyash geopolymer concrete and its comparison with different geopolymer concrete & cement concrete. International Research Journal of Engineering and Technology (IRJET), 6(3), 333–348. Retrieved from https://www.irjet.net/archives/V6/i3/IRJET-V6I363.pdf

Bijay-Singh, Yadvinder-Singh, Khind, C. S., & Meelu, O. P. (1991). Leaching losses of urea-N applied to permeable soils under lowland rice. Fertilizer Research, 28(2), 179–184. https://doi.org/10.1007/BF01049748

Birnadi, S., Frasetya, B., & Sundawa, E. P. (2019). Pengaruh dosis bokashi jerami padi sebagai sumber silika (Si) terhadap pertumbuhan dan hasil tiga varietas padi sawah (Oryza sativa L.). Jurnal Agro, 6(2), 123–133. https://doi.org/10.15575/4817

Boguta, P., D’Orazio, V., Senesi, N., Sokołowska, Z., & Szewczuk-Karpisz, K. (2019). Insight into the interaction mechanism of iron ions with soil humic acids. The effect of the pH and chemical properties of humic acids. Journal of Environmental Management, 245, 367–374. https://doi.org/10.1016/j.jenvman.2019.05.098

Chen, H., Berndtsson, R., Ma, M., & Zhu, K. (2009). Characterization of insolubilized humic acid and its sorption behaviors. Environmental Geology, 57(8), 1847–1853. https://doi.org/10.1007/s00254-008-1472-0

Chen, Y., & Schnitzer, M. (1976). Scanning electron microscopy of a humic acid and of a fulvic acid and its metal and clay complexes. Soil Science Society of America Journal, 40(5), 682–686. https://doi.org/10.2136/sssaj1976.03615995004000050024x

Cuong, T. X., Ullah, H., Datta, A., & Hanh, T. C. (2017). Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Science, 24(5), 283–290. https://doi.org/10.1016/j.rsci.2017.06.002

Darlita, R. D., Joy, B., & Sudirja, R. (2017). Analisis beberapa sifat kimia tanah terhadap peningkatan produksi kelapa sawit pada tanah pasir di Perkebunan Kelapa Sawit Selangkun. Agrikultura, 28(1), 15–20. https://doi.org/10.24198/agrikultura.v28i1.12294

Ennan, Z., Zhu, Y., Hu, J., & Xu, T. (2022). Effects of humic acid organic fertilizer on soil environment in black soil for paddy field under water saving irrigation. Nature Environment and Pollution Technology, 21(3), 1243–1249. https://doi.org/10.46488/NEPT.2022.v21i03.030

Fatima, N., Jamal, A., Huang, Z., Liaquat, R., Ahamad, B., Haider, R., … & Sillanpää, M. (2021). Extraction and chemical characterization of humic acid from nitric acid treated lignite and bituminous coal samples. Sustainability, 13(16), 8969. https://doi.org/10.3390/su13168969

Guo, Y., Ma, Z., Ren, B., Zhao, B., Liu, P., & Zhang, J. (2022). Effects of humic acid added to controlled-release fertilizer on summer maize yield, nitrogen use efficiency and greenhouse gas emission. Agriculture (Switzerland), 12(4), 448. https://doi.org/10.3390/agriculture12040448

Hamid, I., Priatna, S., & Hermawan, A. (2017). Karakteristik beberapa sifat fisika dan kimia tanah pada lahan bekas tambang timah. Jurnal Penelitian Sains, 19(1), 23–31. https://doi.org/10.56064/jps.v19i1.8

Indonesian Soil and Fertilizer Instrument Standard Testing Center. (2023). Analisis kimia tanah, tanaman, air, dan pupuk. Petunjuk Teknis. Retrieved from https://tanahpupuk.bsip.pertanian.go.id

Indonesian Soil Research Institute. (2023). Technical instructions for chemical analysis edition 3: reference procedures for soil, plant, water and fertilizer analysis. Indonesian Soil and Fertilizer Instrument Standard Testing Center (BPSIP). Retrieved from https://bit.ly/JUKNISTANAHEDISIBARU

Karimah, A., Wistara, N. J., Fatriasari, W., Watanabe, T., & Hussin, M. H. (2024). Green preparations of nanolignin from acid-saccharification-treated sugarcane trash. Process Biochemistry, 144, 266–277. https://doi.org/10.1016/j.procbio.2024.06.009

Kelley, K. R., & Stevenson, F. J. (1995). Forms and nature of organic N in soil. Fertilizer Research, 42, 1–11. https://doi.org/10.1007/BF00750495

Khan, I., Awan, S. A., Rizwan, M., Ali, S., Hassan, M. J., Brestic, M., … & Huang, L. (2021). Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicology and Environmental Safety, 222, 112510. https://doi.org/10.1016/j.ecoenv.2021.112510

Kong, B., Wu, Q., Li, Y., Zhu, T., Ming, Y., Li, C., … & Dong, Z. (2022). The application of humic acid urea improves nitrogen use efficiency and crop yield by reducing the nitrogen loss compared with urea. Agriculture, 12(12), 1996. https://doi.org/10.3390/agriculture12121996

Li, Y. (2020). Research progress of humic acid fertilizer on the soil. Journal of Physics: Conference Series, 1549(2), 022004. https://doi.org/10.1088/1742-6596/1549/2/022004

Mahendran, P. P., Gowthamraj, K., Balasubramaniam, P., Chandramani, P., & Yuvaraj, M. (2022). Status and distribution of plant available silicon in relation to some soil properties and response of rice (Oryza sativa L.) to silicon nutrition in the intensively rice growing soils of Kanyakumari District, Tamil Nadu, India. Silicon, 14(4), 1519–1529. https://doi.org/10.1007/s12633-021-00947-2

Malav, J. K., Ramani, V. P., Sajid, M., & Kadam, G. L. (2017). Influence of nitrogen and silicon fertilization on yield and nitrogen and silicon uptake by rice (Oryza sativa L.) under lowland conditions. Research Journal of Chemistry and Environment, 21(8), 45–49. Retrieved from https://scholar.google.co.id/scholar?cluster=18176707464421280906&hl=id&as_sdt=2005&sciodt=0,5

Manjeera, K. S., Subbaiah, P. V., Prasad, P. R. K., & Rekha, M. S. (2021). Available nutrient status of soil as influenced by combined application of humic acid and inorganic nitrogen. International Journal of Plant & Soil Science, 33(22), 209–217. https://doi.org/10.9734/ijpss/2021/v33i2230697

McCauley, A., Jones, C., & Jacobsen, J. (2009). Soil pH and organic matter. Nutrient Management Module, 8(2), 1–12. Montana: Montana State University. Retrieved from https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ef8466de3a8c3353ed88470ca3de21883d10012c

Mindari, W., Sassongko, P. E., & Syekhfani. (2022). Asam humat sebagai amelioran dan pupuk (3rd ed.). Surabaya: UPN “Veteran” Jawa Timur. Retrieved from http://repository.upnjatim.ac.id/id/eprint/4125

Nasrudin, Rosmala, A., & Wijoyo, R. B. (2022). Application of silica nutrients improves plant growth and biomass production of paddy under saline conditions. Caraka Tani: Journal of Sustainable Agriculture, 37(1), 111–122. https://doi.org/10.20961/carakatani.v37i1.43425

Pambayun, L. P. S., Purwanto, B. H., & Utami, S. N. H. (2023). Carbon stock, carbon fraction and nitrogen fraction of soil under bamboo (Dendrocalamus asper Back.) and non-bamboo vegetation. Caraka Tani: Journal of Sustainable Agriculture, 38(2), 404–420. https://doi.org/10.20961/carakatani.v38i2.75881

Piccolo, A., Spaccini, R., Drosos, M., Vinci, G., & Cozzolino, V. (2017). The molecular composition of humus carbon: Recalcitrance and reactivity in soils. The Future of Soil Carbon, 87–124. https://doi.org/10.1016/B978-0-12-811687-6.00004-3

Piccolo, A., Spaccini, R., Martino, A. De, & Scognamiglio, F. (2019). Chemosphere soil washing with solutions of humic substances from manure compost removes heavy metal contaminants as a function of humic molecular composition. Chemosphere, 225, 150–156. https://doi.org/10.1016/j.chemosphere.2019.03.019

Purwanto, B. H., Wulandari, P., Sulistyaningsih, E., H. Utami, S. N., & Handayani, S. (2020). Improved corn yields when humic acid extracted from composted manure is applied to acid soils with phosphorus fertilizer. Applied and Environmental Soil Science, 2021(1), 8838420. https://doi.org/10.1155/2021/8838420

Rashad, R. T., & Hussien, R. A. (2020). Agronomic efficiency of feldspar, quartz silica, and zeolite as silicon (Si) fertilizers in sandy soil. Communications in Soil Science and Plant Analysis, 51(8), 1078–1088. https://doi.org/10.1080/00103624.2020.1751184

Rodrigues, C. I. D., Brito, L. M., & Nunes, L. J. (2023). Soil carbon sequestration in the context of climate change mitigation: A review. Soil Systems, 7(3), 64. https://doi.org/10.3390/soilsystems7030064

Rong, Q., Zhong, K., Huang, H., Li, C., Zhang, C., & Nong, X. (2020). Humic acid reduces the available cadmium, copper, lead, and zinc in soil and their uptake by tobacco. Applied Sciences, 10(3), 1077. https://doi.org/10.3390/app10031077

Sapei, L., Suseno, N., Riadi, L., Padmawijaya, K. S., Thia, S. G. W., Dewi, V., & others. (2018). Biosilica recovery from pulped rice husk by acid precipitation. Chemeca 2018: Chemical Engineering in Autralasia, 179. Retrieved from http://repository.ubaya.ac.id/id/eprint/34069

Schaller, J., Frei, S., Rohn, L., & Gilfedder, B. S. (2020). Amorphous silica controls water storage capacity and phosphorus mobility in soils. Frontiers in Environmental Science, 8, 546942. https://doi.org/10.3389/fenvs.2020.00094

Schubert, S., Steffens, D., & Ashraf, I. (2020). Is occluded phosphate plant‐available?. Journal of Plant Nutrition and Soil Science, 183(3), 338–344. https://doi.org/10.1002/jpln.201900402

Seyedsadr, S., Šípek, V., Jačka, L., Sněhota, M., Beesley, L., Pohořelý, M., Kovář, M., & Trakal, L. (2022). Biochar considerably increases the easily available water and nutrient content in low-organic soils amended with compost and manure. Chemosphere, 293, 133586. https://doi.org/10.1016/j.chemosphere.2022.133586

Shim, J., Shea, P. J., & Oh, B. T. (2014). Stabilization of heavy metals in mining site soil with silica extracted from corn cob. Water, Air, and Soil Pollution, 225(10), 2152. https://doi.org/10.1007/s11270-014-2152-1

Shukla, A., Mehrotra, R. C., Spicer, R. A., Spicer, T. E., & Kumar, M. (2014). Cool equatorial terrestrial temperatures and the South Asian monsoon in the Early Eocene: Evidence from the Gurha Mine, Rajasthan, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 412, 187–198. https://doi.org/10.1016/j.palaeo.2014.08.004

Sinatrya, A. N., Soeparjono, S., & Setiawati, T. C. (2022). Soil drenching with silicon improves the adaptive response of tobacco cultivation under excess water condition. Caraka Tani: Journal of Sustainable Agriculture, 37(2), 344–356. https://doi.org/10.20961/carakatani.v37i2.60756

Siregar, A. F., Kartawisastra, S., & Survey, S. (2020). Ameliorasi berbasis unsur hara silika di lahan rawa. Jurnal Sumberdaya Lahan, 14(1), 37–47. Retrieved from https://epublikasi.pertanian.go.id/berkala/jsl/article/view/3337

Sriwuryandari, L., Priantoro, E. A., Janetasari, S. A., Butar Butar, E. S., & Sembiring, T. (2020). Utilization of rice husk (Oryza sativa) for amorphous biosilica (SiO2) production as a bacterial attachment. IOP Conference Series: Earth and Environmental Science, 483(1), 012023. https://doi.org/10.1088/1755-1315/483/1/012023

Stevenson, F. (1982). Humus chemistry: Genesis, composition, reactions. New York, USA: A Willey & Sons, Inc. Retrieved from https://www.wiley.com/en-ca/Humus+Chemistry%3A+Genesis%2C+Composition%2C+Reactions%2C+2nd+Edition-p-9780471594741

Sukarman, N., & Gani, R. A. (2020). Lahan bekas tambang timah di Pulau Bangka dan Belitung, Indonesia dan kesesuaiannya untuk komoditas pertanian. Jurnal Tanah dan Iklim, 41(2), 101–114. https://doi.org/10.21082/jti.v41n2.2017.101-114

Vargas, C., Pérez-Esteban, J., Escolástico, C., Masaguer, A., & Moliner, A. (2016). Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Environmental Science and Pollution Research, 23(13), 13521–13530. https://doi.org/10.1007/s11356-016-6430-x

Xiao, C., Li, M., Fan, J., Zhang, F., Li, Y., Cheng, H., Li, Y., Hou, X., & Chen, J. (2021). Salt leaching with brackish water during growing season improves cotton growth and productivity, water use efficiency and soil sustainability in southern Xinjiang. Water, 13(18), 2602. https://doi.org/10.3390/w13182602

Refbacks

  • There are currently no refbacks.