Identification of Pathogens Causing Important Diseases in Leatherleaf Fern (Rumohra adiantiformis) and In Vitro Inhibition using Bacillus velezensis B-27

Barokati Tsaniyah, Tri Joko, Ani Widiastuti

Abstract

Leatherleaf fern (Rumohra adiantiformis) is a famous ornamental-leaf plant that has been used by florist entrepreneurs around the world. It is one of the leading export commodities in Indonesia, however, currently, there are some diseases of this leaf reported in the field causing yield loss and reducing the economic value. This study aimed to identify the pathogens causing the recent 3 significant diseases of leatherleaf fern, including leaf blight, leaf tip rot, and post-harvest leaf rot, and in vitro analysis of beneficial bacteria, Bacillus velezensis B-27, against the pathogens. The methods used in this study were isolation, pathogenicity test, morphological observation, molecular identification of pathogens, and poisoned food technique of B. velezensis against those pathogens compared to fungicides and bactericides. The results of molecular identification showed that Neopestalotiopsis sp. and Pantoea ananatis caused leaf blight, Fusarium oxysporum f. sp. sesami triggered leaf tip rot, while Calonectria sp. and P. ananatis contributed to post-harvest leaf rot. Based on in vitro analysis, B. velezensis B-27 reduced the growth of the Neopestalotiopsis sp. DM C with the highest inhibition of 95.6%, Neopestalotiopsis sp. DM B with 84.3%, F. oxysporum f. sp. sesami with 61.9%, Calonectria sp. with 93.4%, and inhibited the growth of P. ananatis by producing a clear zone. This research concludes that B. velezensis B-27 has the potential as a biocontrol against pathogens causing significant diseases in leatherleaf ferns due to its ability to inhibit pathogens and its advantage as a beneficial microbe that is environmentally friendly to support sustainable agriculture.

Keywords

beneficial bacteria; biocontrol; Calonectria sp.; Fusarium oxysporum f. sp. sesami; Neopestalotiopsis sp.; Pantoea ananatis

Full Text:

PDF

References

Aasa, A. O., Njobeh, P. B., & Fru, F. F. (2022). Incidence of Filamentous fungi in some food commodities from Ivory Coast. Journal of Agriculture and Food Research, 8, 100304. https://doi.org/10.1016/j.jafr.2022.100304

Abdel-Gaied, T. G., Abd-El-Khair, H., Youssef, M. M., El-Maaty, S. A., & Mikhail, M. S. (2022). First report of strawberry bacterial leaf blight caused by Pantoea ananatis in Egypt. Journal of Plant Protection Research, 62(2), 207–214. https://doi.org/10.24425/jppr.2022.141359

Abdelkhalek, A., Behiry, S. I., & Al-Askar, A. A. (2020). Bacillus velezensis pea1 inhibits Fusarium oxysporum growth and induces systemic resistance to cucumber mosaic virus. Agronomy, 10(9), 1312. https://doi.org/10.3390/agronomy10091312

Agent, B., Bib, S., Carvalho, I. De, Apaza-castillo, G. A., Padula, C., Guimarães, M., Quecine, M. C., & Bonatelli, L. (2023). Draft genome sequence of the plant growth promoter and biocontrol agent Bacillus velezensis strain BIB0110. Microbiology Resource Announcements, 12(6), e00231-23 https://doi.org/10.1128/mra.00231-23

Asrul, A. (2020). The virulence of several isolates of Pantoea ananatis causes bacterial leaf blight in shallot varieties. AGROMIX, 11(2), 136–150. https://doi.org/10.35891/agx.v11i2.1946

Baggio, J. S., Forcelini, B. B., Wang, N. Y., Ruschel, R. G., Mertely, J. C., & Peres, N. A. (2021). Outbreak of leaf spot and fruit rot in Florida strawberry caused by Neopestalotiopsis spp. Plant Disease, 105(2), 305–315. https://doi.org/10.1094/PDIS-06-20-1290-RE

Baggio, J. S., & Peres, N. A. (2020). Pestalotia leaf spot and fruit rot of strawberry. EDIS, 20, 357. https://doi.org/10.32473/edis-pp357-2020

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Bastos, R. W., Rossato, L., Goldman, G. H., & Santos, D. A. (2021). Fungicide effects on human fungal pathogens: Cross-resistance to medical drugs and beyond. PLoS Pathogens, 17(12), 1–26. https://doi.org/10.1371/journal.ppat.1010073

Dahal, N., & Shrestha, R. K. (2018). Evaluation of efficacy of fungicides against Fusarium oxysporum f. sp. lentis in vitro at Lamjung, Nepal. Journal of the Institute of Agriculture and Animal Science, 35(1), 105–112. https://doi.org/10.3126/jiaas.v35i1.22520

Dos Santos, H. R. M., Argolo, C. S., Argôlo-Filho, R. C., & Loguercio, L. L. (2019). A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC microbiology, 19, 1–14. https://doi.org/10.1186/s12866-019-1446-2

Duan, Y., Qu, W., Chang, S., Li, C., Xu, F., Ju, M., ... & Miao, H. (2020). Identification of pathogenicity groups and pathogenic molecular characterization of Fusarium oxysporum f. sp. sesami in China. Phytopathology, 110(5), 1093–1104. https://doi.org/10.1094/PHYTO-09-19-0366-R

Elmer, W. H. (2015). Management of Fusarium crown and root rot of asparagus. Crop Protection, 73, 2–6. https://doi.org/10.1016/j.cropro.2014.12.005

Erdurmuş, D., Palacıoğlu, G., Erdurmuş, G., & Bayraktar, H. (2023). First report of Neopestalotiopsis rosae causing leaf spot and crown rot of strawberry in Turkey. Journal of Plant Pathology, 105(1), 315–315. https://doi.org/10.1007/s42161-022-01218-8

Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and environmental microbiology, 61(4), 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995

Goswami, S. K., Singh, V., Chakdar, H., & Choudhary, P. (2018). Harmful effects of fungicides-Current status. International Journal of Agriculture, Environment and Biotechnology, 11, 1011–1019. Retrieved from https://www.researchgate.net/publication/324273873_Harmful_effects_of_fungicides_current_status

Hanudin, H., Nuryani, W., Yusuf, E. S., & Budiarto, K. (2019). Combined application of Bio-PF and synthetic fungicide suppress soil borne disease caused by Cylindrocladium sp. in leather leaf. AGRIVITA Journal of Agricultural Science, 41(2), 266–276. http://doi.org/10.17503/agrivita.v41i2.1842

Hariharan, G., & Prasannath, K. (2021). Recent advances in molecular diagnostics of fungal plant pathogens: A mini review. Frontiers in Cellular and Infection Microbiology, 10, 600234. https://doi.org/10.3389/fcimb.2020.600234

Hassan, M. A., El-Saadony, M. T., Mostafa, N. G., El-Tahan, A. M., Mesiha, P. K., El-Saadony, F. M., ... & Ashry, N. M. (2021). The use of previous crops as sustainable and eco-friendly management to fight Fusarium oxysporum in sesame plants. Saudi Journal of Biological Sciences, 28(10), 5849–5859. https://doi.org/10.1016/j.sjbs.2021.06.041

Hong, S., Kim, T. Y., Won, S. J., Moon, J. H., Ajuna, H. B., Kim, K. Y., & Ahn, Y. S. (2022). Control of fungal diseases and fruit yield improvement of strawberry using Bacillus velezensis CE 100. Microorganisms, 10(2), 365. https://doi.org/10.3390/microorganisms10020365

Jayanti, R. M., & Joko, T. (2020). Plant growth promoting and antagonistic potential of endophytic bacteria isolated from melon in Indonesia. Plant Pathology Journal, 19(3), 200–210. https://doi.org/10.3923/ppj.2020.200.210

Jin, P., Wang, Y., Tan, Z., Liu, W., & Miao, W. (2020). Antibacterial activity and rice-induced resistance, mediated by C15surfactin A, in controlling rice disease caused by Xanthomonas oryzae pv. oryzae. Pesticide Biochemistry and Physiology, 169, 104669. https://doi.org/10.1016/j.pestbp.2020.104669

Leslie, J. F., & Summerell, B. A. (2006). The fusarium laboratory manual. Blackwell Publishing, Hoboken, pp. 1–2. https://doi.org/10.1002/9780470278376

Liao, J., Liang, X., Li, H., Mo, L., Mo, R., Chen, W., ... & Jiang, W. (2023). Biocontrol ability of Bacillus velezensis T9 against Apiospora arundinis causing Apiospora mold on sugarcane. Frontiers in Microbiology, 14, 1314887. https://doi.org/10.3389/fmicb.2023.1314887

Lopes, L. G., Csonka, L. A., Castellane, J. A. S., Oliveira, A. W., de Almeida-Júnior, S., Furtado, R. A., Tararam, C., Levy, L. O., Crivellenti, L. Z., Moretti, M. L., Giannini, M. J. S. M., & Pires, R. H. (2021). Disinfectants in a hemodialysis setting: Antifungal activity against Aspergillus and Fusarium planktonic and biofilm cells and the effect of commercial peracetic acid residual in mice. Frontiers in Cellular and Infection Microbiology, 11, 663741. https://doi.org/10.3389/fcimb.2021.663741

Kloepper, J. W., McInroy, J. A., Liu, K., & Hu, C. H. (2013). Symptoms of fern distortion syndrome resulting from inoculation with opportunistic endophytic fluorescent Pseudomonas spp. PLoS ONE, 8(3), e58531. https://doi.org/10.1371/journal.pone.0058531

Maharachchikumbura, S. S., Guo, L. D., Chukeatirote, E., Bahkali, A. H., & Hyde, K. D. (2011). Pestalotiopsis—morphology, phylogeny, biochemistry and diversity. Fungal diversity, 50, 167–187. https://doi.org/10.1007/s13225-011-0125-x

Marissa, S., Orshinsky, A., & Grabowski, M. (2021). Fusarium crown and root rot. United States: University of Minnesota Extension. Retrieved from https://extension.umn.edu/disease-management/fusarium-crown-and-root-rot

Nair, S. A., Laxman, R. H., & Sangama, S. (2020). Influence of coloured shade nets and seasons on production and quality of cut foliage of leather leaf fern (Rumohra adiantiformis). The Indian Journal of Agricultural Sciences, 90(8), 1434–1438. https://doi.org/10.56093/ijas.v90i8.105938

Rahma, A. A., Somowiyarjo, S., & Joko, T. (2020). Induced disease resistance and promotion of shallot growth by Bacillus velezensis B-27. Pakistan Journal of Biological Sciences, 23(9), 1113–1121. https://doi.org/10.3923/pjbs.2020.1113.1121

Safari, Z. S., Ding, P., Nakasha, J. J., & Yusoff, S. F. (2021). Controlling Fusarium oxysporum tomato fruit rot under tropical condition using both chitosan and vanillin. Coatings, 11(3), 367. https://doi.org/10.3390/coatings11030367

Schaad, N. W., Jones, J. B. dan Chun, W. (2001). Laboratory guide for identification of plant pathogen bacteria. Third Edition. APS Press. St. Paul Minnessota. 373 p. Retrieved from https://www.cabidigitallibrary.org/doi/full/10.5555/20013064240

Singh, J. K., Chaurasia, B., Dubey, A., Faneite Noguera, A. M., Gupta, A., Kothari, R., Upadhyay, C. P., Kumar, A., Hashem, A., Alqarawi, A. A., & Abd Allah, E. F. (2021). Biological characterization and instrumental analytical comparison of two biorefining pretreatments for water hyacinth (Eichhornia crassipes) biomass hydrolysis. Sustainability, 13(1), 245. https://doi.org/10.3390/su13010245

Song, P., Li, G., Zhao, Q., Lu, G., Zhao, X., Liu, L., ... & Zhou, H. (2023). First report of a new bacterial stem rot disease of strawberry (Fragaria× ananassa) caused by Pantoea ananatis in Jiangsu, China. Plant Disease, 107(7), 2210. https://doi.org/10.1094/PDIS-07-22-1662-PDN

Sumardiyono, C., Joko, T., Kristiawati, Y., & Chinta, Y. D. (2011). Diagnosis dan pengendalian penyakit antraknosa pada pakis dengan fungisida. Jurnal Hama dan Penyakit Tumbuhan Tropika, 11(2), 194–200. https://doi.org/10.23960/j.hptt.211194-200

Sundari, D., Wibowo, A., Joko, T., Widiastuti, A., & Pustika, A. B. (2023). The diversity of shallot rhizomicrobiome and twisted disease suppression with the application of Bacillus spp. and Trichoderma asperellum. Jurnal Fitopatologi Indonesia, 19(4), 156–165. https://doi.org/10.14692/jfi.19.4.156

Sunkad, G., Patil, M. S., & Joshi, R. (2023). Bacillus valezensis: A new plant growth promoting rhizobacterium for plant growth promotion and inhibition of Rhizoctonia bataticola for the management of dry root rot of chickpea. Legume Research, 46(10), 1378–1384. https://doi.org/10.18805/LR-5106

Tarigan, M., Pham, N. Q., Jami, F., Oliveira, L. S. S., Saha, M. A., Durán, A., & Wingfield, M. J. (2023). Calonectria species diversity on eucalypts in Indonesia. Southern Forests: A Journal of Forest Science, 85(1), 56–64 https://doi.org/10.2989/20702620.2023.2179441

Widiastuti, A., Aruan, I. K., Giovanni, A. C., Tsaniyah, B., Joko, T., & Priyatmojo, A. (2024). Neopestalotiopsis leaf blight, an emerging concern on leatherleaf fern in Indonesia. Research in Plant Disease, 30(1), 82–87. https://doi.org/10.5423/RPD.2024.30.1.82

Zhang, Y., Chen, C., Chen, C., Chen, J., Xiang, M., Wanasinghe, D. N., ... & Manawasinghe, I. S. (2022). Identification and characterization of Calonectria species associated with plant diseases in Southern China. Journal of Fungi, 8(7), 719. https://doi.org/10.3390/jof8070719

Zhou, J., Xie, Y., Liao, Y., Li, X., Li, Y., Li, S., ... & He, Y. Q. (2022). Characterization of a Bacillus velezensis strain isolated from Bolbostemmatis Rhizoma displaying strong antagonistic activities against a variety of rice pathogens. Frontiers in Microbiology, 13, 983781. https://doi.org/10.3389/fmicb.2022.983781

Refbacks

  • There are currently no refbacks.