Hormesis in Pathogenic and Biocontrol Fungi: From Inhibition to Stimulation

Krisnanda Surya Dharma, Suryanti Suryanti, Ani Widiastuti

Abstract

Hormesis, a biphasic response where low doses of stressors stimulate growth and high doses inhibit it, has significant implications for agricultural chemical use. This review explores the impact of low-dose fungicides or pesticides on pathogenic and biocontrol fungi. This study highlights how sublethal dose exposure can enhance growth and virulence of fungal pathogens, while also potentially increasing their stress tolerance at higher doses. This phenomenon complicates fungicide resistance management strategies. The review focuses on specific fungicides such as dimethachlone, prochloraz, carbendazim, and others, and their hormetic effects on fungal pathogens. Furthermore, the effects of low-dose pesticides and fungicides on beneficial fungi like entomopathogenic and arbuscular mycorrhizal fungi (AMF) are discussed. Here, low-dose exposure can stimulate the germination of entomopathogenic fungal conidia and enhance AMF root colonization and phosphorus uptake. However, hormesis can have trade-offs, potentially leading to unforeseen consequences for the organism. A thorough understanding of hormesis and dose-dependent fungicide effects is crucial for optimizing disease management and agricultural practices. This knowledge can inform strategies to minimize pathogen resistance and promote sustainable approaches. Implementing integrated disease management that combines fungicides with different modes of action alongside other control methods can be effective. Careful consideration of fungicide doses and potential hormesis effects is paramount for ensuring sustainable plant disease control and food security.

Keywords

biphasic; dose-dependent; entomopathogens; fungicide; mycorrhiza

Full Text:

PDF

References

Abdullah, J. T., Suryanti, S., & Joko, T. (2023). Utilization of arbuscular mycorrhizal fungi and Bacillus velezensis inoculation in suppressing twisted disease of shallot. Jurnal Perlindungan Tanaman Indonesia, 27(2), 103–109. https://doi.org/10.22146/jpti.89296

Agathokleous, E. (2022). On the meta-analysis of hormetic effects. Science of the Total Environment, 852, 158273. https://doi.org/10.1016/j.scitotenv.2022.158273

Agathokleous, E., & Calabrese, E. J. (2021). Fungicide-induced hormesis in phytopathogenic fungi: A critical determinant of successful agriculture and environmental sustainability. Journal of Agricultural and Food Chemistry, 69(16), 4561–4563. https://doi.org/10.1021/acs.jafc.1c01824

Agathokleous, E., & Calabrese, E. J. (2024). Evolution of hormesis research: A bibliometric analysis. Archives of Toxicology, 98(2), 577–578. https://doi.org/10.1007/s00204-023-03635-9

Agathokleous, E., Kitao, M., Harayama, H., & Calabrese, E. J. (2019). Temperature-induced hormesis in plants. Journal of Forestry Research, 30, 13–20. https://doi.org/10.1007/s11676-018-0790-7

Agathokleous, E., Wang, Q., Iavicoli, I., & Calabrese, E. J. (2022). The relevance of hormesis at higher levels of biological organization: Hormesis in microorganisms. Current Opinion in Toxicology, 29, 1–9. https://doi.org/10.1016/j.cotox.2021.11.001

Altinok, H. H., Altinok, M. A., & Koca, A. S. (2019). Modes of action of entomopathogenic fungi. Current Trends in Natural Sciences, 8(16), 117–124. Retrieved from https://www.natsci.upit.ro/media/1838/16altinok-et-al.pdf

Alves, M. M. T. A., Orlandelli, R. C., Lourenço, D. A. L., & Pamphile, J. A. (2011). Toxicity of the insect growth regulator lufenuron on the entomopathogenic fungus Metarhizium anisopliae. African Journal of Biotechnology, 10(47), 9668–9672. https://doi.org/10.5897/AJB11.1253

Amallia, R., Suryanti, S., & Joko, T. (2023). The potential of Rhizophagus intraradices, Bacillus thuringiensis Bt BMKP and silica for anthracnose disease control in shallot. Caraka Tani: Journal of Sustainable Agriculture, 38(2), 433–446. http://dx.doi.org/10.20961/carakatani.v38i2.76536

Arinanto, L. S., Hoffmann, A. A., Ross, P. A., & Gu, X. (2024). Hormetic effect induced by Beauveria bassiana in Myzus persicae. Pest Management Science. https://doi.org/10.1002/ps.8075

Calabrese, E. J., & Mattson, M. P. (2011). Hormesis provides a generalized quantitative estimate of biological plasticity. Journal of cell communication and signaling, 5, 25–38. https://doi.org/10.1007/s12079-011-0119-1

Calabrese, E. J., & Mattson, M. P. (2017). How does hormesis impact biology, toxicology, and medicine? NPJ-aging-and-mechanisms-of-disease, 3(1), 13. https://doi.org/10.1038/s41514-017-0013-z

Cong, M., He, S., Zhang, J., Luo, C., & Zhu, F. (2018). Hormetic effects of mixtures of carbendazim and iprodione on the virulence of Botrytis cinerea. Plant Disease, 103(1), 95–101. https://doi.org/10.1094/PDIS-05-18-0754-RE

Cong, M., Zhang, B., Zhang, K., Li, G., & Zhu, F. (2019). Stimulatory effects of sublethal doses of carbendazim on the virulence and sclerotial production of Botrytis cinerea. Plant Disease, 103(9), 2385–2391. https://doi.org/10.1094/PDIS-01-19-0153-RE

da Silva, E. L., Garzón, C. D., & Lopes, U. P. (2022). Hormesis effect and management of thiophanate-methyl resistance in Lasiodiplodia theobromae isolates. Research Square, 1–14. https://doi.org/10.21203/rs.3.rs-1715820/v1

da Silva, G. R. V., De Oliveira, V. H., & Tibbett, M. (2021). Cadmium stress causes differential effects on growth and the secretion of carbon-degrading enzymes in four mycorrhizal basidiomycetes. Mycoscience, 62(2), 132–136. https://doi.org/10.47371/mycosci.2020.12.002

Erofeeva, E. A. (2021). Plant hormesis and Shelford’s tolerance law curve. Journal of Forestry Research, 32(5), 1789–1802. https://doi.org/10.1007/s11676-021-01312-0

Erofeeva, E. A. (2023). Environmental hormesis in living systems: The role of hormetic trade-offs. Science of the Total Environment, 901, 166022. https://doi.org/10.1016/j.scitotenv.2023.166022

Erofeeva, E. A., Gelashvili, D. B., & Rozenberg, G. S. (2023). The modern concept of hormesis: An overview of the issue and its significance for ecology. Biology Bulletin Reviews, 13(Suppl 3), S229–S239. https://doi.org/10.1134/S2079086423090037

Fauriah, R., Amin, N., Daud, I. D., & Harsanti, E. S. (2021). The potential of endophytic fungi as biodegradation of chlorpyrifos in shallots. IOP Conference Series: Earth and Environmental Science, 807(3), 032058. https://doi.org/10.1088/1755-1315/807/3/032058

Flores, F. J., & Garzon, C. D. (2013). Detection and assessment of chemical hormesis on the radial growth in vitro of oomycetes and fungal plant pathogens. Dose-Response, 11(3), 361–373. https://doi.org/10.2203/dose-response.12-026.Garzon

Garland Jr, T., Downs, C. J., & Ives, A. R. (2022). Trade-offs (and constraints) in organismal biology. Physiological and biochemical zoology, 95(1), 82–112. https://doi.org/10.1086/717897

Garzón, C. D., & Flores, F. J. (2013). Hormesis: Biphasic dose-responses to fungicides in plant pathogens and their potential threat to agriculture. Fungicides-Showcases of Integrated Plant Disease Management from Around the World. InTech, Europe, 311–328. https://doi.org/10.5772/55359

Garzón, C. D., Molineros, J. E., Yánez, J. M., Flores, F. J., del Mar Jiménez-Gasco, M., & Moorman, G. W. (2011). Sublethal doses of mefenoxam enhance Pythium damping-off of geranium. Plant Disease, 95(10), 1233–1238. https://doi.org/10.1094/PDIS-09-10-0693

Godínez-Mendoza, P. L., Rico-Chávez, A. K., Ferrusquía-Jimenez, N. I., Carbajal-Valenzuela, I. A., Villagómez-Aranda, A. L., Torres-Pacheco, I., & Guevara-González, R. G. (2023). Plant hormesis: Revising of the concepts of biostimulation, elicitation and their application in a sustainable agricultural production. Science of the Total Environment, 894, 164883. https://doi.org/10.1016/j.scitotenv.2023.164883

Habibullah, M., Sumardiyono, C., & Widiastuti, A. (2020). Potency of non-fungicide chemicals for maize inducing resistance against downy mildew. Jurnal Perlindungan Tanaman Indonesia, 24(2), 154. https://doi.org/10.22146/jpti.55057

Hu, S., Xu, Q., Zhang, Y., & Zhu, F. (2020). Stimulatory effects of boscalid on virulence of Sclerotinia sclerotiorum indicate hormesis may be masked by inhibitions. Plant Disease, 104(3), 833–840. https://doi.org/10.1094/PDIS-07-19-1421-RE

Jacquet, F., Jeuffroy, M.H., Jouan, J., Le Cadre, E., Litrico, I., Malausa, T., Reboud, X., & Huyghe, C. (2022). Pesticide-free agriculture as a new paradigm for research. Agronomy for Sustainable Development, 42(1), 8. https://doi.org/10.1007/s13593-021-00742-8

Jakobsen, I., Murmann, L. M., & Rosendahl, S. (2021). Hormetic responses in arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 159, 108299. https://doi.org/10.1016/j.soilbio.2021.108299

Krutmuang, P., Rajula, J., Pittarate, S., Chanbang, Y., Perumal, V., Alford, L., & Thungrabeab, M. (2023). Biocontrol efficacy of Beauveria bassiana in combination with tobacco short stem and modified lure traps. International Journal of Tropical Insect Science, 43(5), 1591–1600. https://doi.org/10.1007/s42690-023-01063-x

Kuźniak, E., & Urbanek, H. (2000). The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiologiae Plantarum, 22, 195–203. https://doi.org/10.1007/s11738-000-0076-4

Lourdes, G. C. M., Stéphane, D., & Maryline, C. S. (2021). Impact of increasing chromium (VI) concentrations on growth, phosphorus and chromium uptake of maize plants associated to the mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Heliyon, 7(1), e05891. https://doi.org/10.1016/j.heliyon.2020.e05891

Lu, X., He, S., Ma, H., Li, J., & Zhu, F. (2018). Hormetic effects of flusilazole preconditioning on mycelial growth and virulence of Sclerotinia sclerotiorum. Plant Disease, 102(6), 1165–1170. https://doi.org/10.1094/PDIS-10-17-1638-RE

McClure, C. D., Zhong, W., Hunt, V. L., Chapman, F. M., Hill, F. V., & Priest, N. K. (2014). Hormesis results in trade-offs with immunity. Evolution, 68(8), 2225–2233. https://doi.org/10.1111/evo.12453

Mora, M. A. E., Castilho, A. M. C., & Fraga, M. E. (2017). Classification and infection mechanism of entomopathogenic fungi. Arquivos do Instituto Biológico, 84, e0552015. https://doi.org/10.1590/1808-1657000552015

Nurhayati, Y., Suryanti, S., & Wibowo, A. (2021). In vitro evaluation of Trichoderma asperellum isolate UGM-LHAF against Rhizoctonia solani causing sheath blight disease of rice. Jurnal Perlindungan Tanaman Indonesia, 25(1), 64–73. https://doi.org/10.22146/jpti.65290

Ons, L., Bylemans, D., Thevissen, K., & Cammue, B. P. (2020). Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms, 8(12), 1930. https://doi.org/10.3390/microorganisms8121930

Pagano, M. C., Kyriakides, M., & Kuyper, T. W. (2023). Effects of pesticides on the arbuscular mycorrhizal-symbiosis. Agrochemicals, 2(2), 337–354. https://doi.org/10.3390/agrochemicals2020020

Pamphile, J. A., Tonussi, R. L., Fabrice, C. E. S., Orlandelli, R. C. (2012). Toxicity of the pyrethroid deltamethrin on the entomopathogenic fungus Metarhizium anisopliae var. anisopliae (Metsch) Sorokin assessed by germination speed parameter. Annals of Biological Research, 3(11), 5028–5033. Retrieved from https://www.scholarsresearchlibrary.com/articles/toxicity-of-the-pyrethroid-deltamethrin-on-the-entomopathogenic-fungus-metarhiziumanisopliae-var-anisopliae-metsch-sorok.pdf

Panth, M., Hassler, S. C., & Baysal-Gurel, F. (2020). Methods for management of soilborne diseases in crop production. Agriculture, 10(1), 16. https://doi.org/10.3390/agriculture10010016

Perumal, V., Kannan, S., Alford, L., Pittarate, S., & Krutmuang, P. (2024). Study on the virulence of Metarhizium anisopliae against Spodoptera frugiperda (JE Smith, 1797). Journal of Basic Microbiology, 64(5), 2300599. https://doi.org/10.1002/jobm.202300599

Perumal, V., Kannan, S., Alford, L., Pittarate, S., Geedi, R., Elangovan, D., Marimuthu, R., & Krutmuang, P. (2023a). First report on the enzymatic and immune response of Metarhizium majus bag formulated conidia against Spodoptera frugiperda: An ecofriendly microbial insecticide. Frontiers in Microbiology, 14, 1104079. https://doi.org/10.3389/fmicb.2023.1104079

Perumal, V., Kannan, S., Alford, L., Pittarate, S., Mekchay, S., Reddy, G.V., Elangovan, D., Marimuthu, R., & Krutmuang, P. (2023b). Biocontrol effect of entomopathogenic fungi Metarhizium anisopliae ethyl acetate‐derived chemical molecules: An eco‐friendly anti‐malarial drug and insecticide. Archives of Insect Biochemistry and Physiology, 114(2), 1–19. https://doi.org/10.1002/arch.22037

Pradhan, S., Flores, F. J., Molineros, J. E., Walker, N. R., Melouk, H., & Garzon, C. D. (2017). Improved assessment of mycelial growth stimulation by low doses of mefenoxam in plant pathogenic Globisporangium species. European Journal of Plant Pathology, 147, 477–487. https://doi.org/10.1007/s10658-016-1016-5

Pradhan, S., Miller, L., Marcillo, V., Koch, A. R., Graf Grachet, N., Molineros, J. E., Walker, N.R., Melouk, H., & Garzon, C. D. (2019). Hormetic effects of thiophanate-methyl in multiple isolates of Sclerotinia homoeocarpa. Plant disease, 103(1), 89–94. https://doi.org/10.1094/PDIS-05-18-0872-RE

Qu, S., & Wang, S. (2018). Interaction of entomopathogenic fungi with the host immune system. Developmental & Comparative Immunology, 83, 96–103. https://doi.org/10.1016/j.dci.2018.01.010

Rico-Chávez, A. K., Franco, J. A., Fernandez-Jaramillo, A. A., Contreras-Medina, L. M., Guevara-González, R. G., & Hernandez-Escobedo, Q. (2022). Machine learning for plant stress modeling: A perspective towards hormesis management. Plants, 11, 970. https://doi.org/10.3390/plants11070970

Ross, E. M., & Maxwell, P. H. (2018). Low doses of DNA damaging agents extend Saccharomyces cerevisiae chronological lifespan by promoting entry into quiescence. Experimental gerontology, 108, 189–200. https://doi.org/10.1016/j.exger.2018.04.020

Santika, I. A., Wibowo, A., Suryanti, S., Sumardiyono, C., & Widiastuti, A. (2023). In vitro evaluation on resistance of Phytopythium vexans (NG isolate) cultured from sublethal concentration against several fungicides. Jurnal Perlindungan Tanaman Indonesia, 27(1), 10–17. https://doi.org/10.22146/jpti.73045

Scortichini, M. (2022). Sustainable management of diseases in horticulture: Conventional and new options. Horticulturae, 8(6), 517. https://doi.org/10.3390/horticulturae8060517

Song, J., Han, C., Zhang, S., Wang, Y., Liang, Y., Dai, Q., Huo, Z., & Xu, K. (2022). Hormetic effects of carbendazim on mycelial growth and aggressiveness of Magnaporthe oryzae. Journal of Fungi, 8(10), 1008. https://doi.org/10.3390/jof8101008

Swathy, K., Parmar, M. K., & Vivekanandhan, P. (2023). Biocontrol efficacy of entomopathogenic fungi Beauveria bassiana conidia against agricultural insect pests. Environmental Quality Management. https://doi.org/10.1002/tqem.22174

Tang, L., Zhou, Y., Zhang, Y., & Sun, H. (2022). The role of energy source or substrate in microbial hormesis. Current Opinion in Toxicology, 29, 10–18. https://doi.org/10.1016/j.cotox.2021.12.001

Vivekanandhan, P., Alahmadi, T. A., & Ansari, M. J. (2024a). Pathogenicity of Metarhizium rileyi (Hypocreales: Clavicipitaceae) against Tenebrio molitor (Coleoptera: Tenebrionidae). Journal of Basic Microbiology, 64(5), 2300744. https://doi.org/10.1002/jobm.202300744

Vivekanandhan, P., Swathy, K., Alahmadi, T. A., & Ansari, M. J. (2024b). Biocontrol effects of chemical molecules derived from Beauveria bassiana against larvae of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Frontiers in Microbiology, 15, 1336334. https://doi.org/10.3389/fmicb.2024.1336334

Vivekanandhan, P., Swathy, K., Bedini, S., & Shivakumar, M. S. (2023). Bioprospecting of Metarhizium anisopliae derived crude extract: A ecofriendly insecticide against insect pest. International Journal of Tropical Insect Science, 43(2), 429–440. https://doi.org/10.1007/s42690-022-00935-y

Wang, J., Bradley, C. A., Stenzel, O., Pedersen, D. K., Reuter-Carlson, U., & Chilvers, M. I. (2017). Baseline sensitivity of Fusarium virguliforme to fluopyram fungicide. Plant Disease, 101(4), 576–582. https://doi.org/10.1094/PDIS-09-16-1250-RE

Wang, S., Huang, B., Fan, D., Agathokleous, E., Guo, Y., Zhu, Y., & Han, J. (2021). Hormetic responses of soil microbiota to exogenous Cd: A step toward linking community-level hormesis to ecological risk assessment. Journal of Hazardous Materials, 416, 125760. https://doi.org/10.1016/j.jhazmat.2021.125760

Widiastuti, A., Simarmata, R. F., & Sumardiyono, C. (2021). Potency of galangal extract as botanical fungicide to control grape leave rust disease (Phakopsora euvitis). Jurnal Fitopatologi Indonesia, 16(3), 135–143. https://doi.org/10.14692/jfi.16.3.135-143

Zhang, R., Zhang, Y., Xu, Q., Li, J., & Zhu, F. (2019). Hormetic effects of mixtures of dimethachlone and prochloraz on Sclerotinia sclerotiorum. Plant Disease, 103(3), 546–554. https://doi.org/10.1094/PDIS-06-18-1071-RE

Refbacks

  • There are currently no refbacks.