Role of Ocimum basilicum var. thyrsiflora (Thai Basil) Aqueous Extract Treated with Yeast Suspension in Enhancing Tomato Plant Resistance to Fusarium oxysporum
Abstract
Keywords
Full Text:
PDFReferences
Ahmed, H. F., Seleiman, M. F., Mohamed, I. A., Taha, R. S., Wasonga, D. O., & Battaglia, M. L. (2023). Activity of essential oils and plant extracts as biofungicides for suppression of soil-borne fungi associated with root rot and wilt of marigold (Calendula officinalis L.). Horticulturae, 9(2), 222. https://doi.org/10.3390/horticulturae9020222
Akladious, S. A., Isaac, G. S., & Abu-Tahon, M. A. (2015). Induction and resistance against Fusarium wilt disease of tomato by using sweet basil (Ocimum basilicum L) extract. Canadian Journal of Plant Science, 95(4), 689–701. https://doi.org/10.4141/cjps-2014-12
Avetisyan, A., Markosian, A., Petrosyan, M., Sahakyan, N., Babayan, A., Aloyan, S., & Trchounian, A. (2017). Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complementary and Alternative Medicine, 17(1), 1–8. https://doi.org/10.1186/s12906-017-1587-5
Chand, K., Shah, S., Sharma, J., Paudel, M. R., & Pant, B. (2020). Isolation, characterization, and plant growth-promoting activities of endophytic fungi from a wild orchid Vanda cristata. Plant signaling & behavior, 15(5), 1744294. https://doi.org/10.1080/15592324.2020.1744294
Duniway, J. M. (1971). Water relations of Fusarium wilt in tomato. Physiological Plant Pathology, 1(4), 537–546. https://doi.org/10.1016/0048-4059(71)90015-4
FAO. (2021). Agricultural value chain study in Iraq—Dates, grapes, tomatoes and wheat. Bagdad, Irak: Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/cb2132en
Fayyadh, M. A., Al-Badran, A. I., & Al-Jaafari, I. S. (2017). Molecular identification of Fusarium spp. isolated from tomato plant in Iraq and China. Basrah Journal of Agricultural Sciences, 30(1), 65–72. https://doi.org/10.37077/25200860.2017.23
Godlewska, K., Ronga, D., & Michalak, I. (2021). Plant extracts-importance in sustainable agriculture. Italian Journal of Agronomy, 16(2), 1851. https://doi.org/10.4081/ija.2021.1851
Guo, H., Saravanakumar, K., & Wang, M.-H. (2018). Total phenolic, flavonoid contents and free radical scavenging capacity of extracts from tubers of Stachys affinis. Biocatalysis and agricultural biotechnology, 15, 235–239. https://doi.org/10.1016/j.bcab.2018.06.009
Hornero-Méndez, D., & Mínguez-Mosquera, M. I. (2001). Rapid spectrophotometric determination of red and yellow isochromic carotenoid fractions in paprika and red pepper oleoresins. Journal of Agricultural and Food Chemistry, 49(8), 3584–3588. https://doi.org/10.1021/jf010400l
Kačániová, M., Galovičová, L., Borotová, P., Vukovic, N. L., Vukic, M., Kunová, S., ... & Kowalczewski, P. Ł. (2022). Assessment of Ocimum basilicum essential oil anti-insect activity and antimicrobial protection in fruit and vegetable quality. Plants, 11(8), 1030. https://doi.org/10.3390/plants11081030
Kursa, W., Jamiołkowska, A., Wyrostek, J., & Kowalski, R. (2022). Antifungal effect of plant extracts on the growth of the cereal pathogen Fusarium spp.—An in vitro study. Agronomy, 12(12), 3204. https://doi.org/10.3390/agronomy12123204
Li, Q., & Chang, C. (2016). Basil (Ocimum basilicum L.) oils. Essential oils in food preservation, flavor and safety, 231–238. https://doi.org/10.1016/B978-0-12-416641-7.00025-0
Lira-De León, K. I., Ramírez-Mares, M. V., Sánchez-López, V., Ramírez-Lepe, M., Salas-Coronado, R., Santos-Sánchez, N. F., ... & Hernández-Carlos, B. (2014). Effect of crude plant extracts from some Oaxacan flora on two deleterious fungal phytopathogens and extract compatibility with a biofertilizer strain. Frontiers in Microbiology, 5, 383. https://doi.org/10.3389/fmicb.2014.00383
Łyczko, J., Masztalerz, K., Lipan, L., Lech, K., Carbonell-Barrachina, Á. A., & Szumny, A. (2020). Chemical determinants of dried Thai basil (O. basilicum var. thyrsiflora) aroma quality. Industrial Crops and Products, 155, 112769. https://doi.org/10.1016/j.indcrop.2020.112769
Mona, S. A., Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Soliman, D. W. K., Wirth, S., & Egamberdieva, D. (2017). Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of integrative agriculture, 16(8), 1751–1757. https://doi.org/10.1016/S2095-3119(17)61695-2
Nassar, M. A., El-Segai, M. U., & Azoz, S. N. (2015). Influence of foliar spray with yeast extract on vegetative growth, yield of fresh herb, anatomical structure, composition of volatile oil and seed yield components of basil plant (Ocimum basilicum L.). International Journal, 3(10), 978–993. Retrieved from https://www.journalijar.com/article/6511/influence-of-foliar-spray-with-yeast-extract-on-vegetative-growth,-yield-of-fresh-herb,-anatomical-structure,-composition-of-volatile-oil-and-seed-yield-components-of-basil-plant-(ocimum-basilicum-l/
Ngegba, P. M., Cui, G., Khalid, M. Z., & Zhong, G. (2022). Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture, 12(5), 600. https://doi.org/10.3390/agriculture12050600
Onwuka, G. I. (2005). Food analysis and instrumentation: Theory and practice. Lagos: Napthali prints. Retrieved from https://scholar.google.co.id/scholar?cluster=13672798385263005263&hl=id&as_sdt=2005&sciodt=0,5&authuser=3
Pandhair, V., & Sekhon, B. (2006). Reactive oxygen species and antioxidants in plants: An overview. Journal of Plant Biochemistry and Biotechnology, 15, 71–78. https://doi.org/10.1007/BF03321907
Riggi, E., Patané, C., & Ruberto, G. (2008). Content of carotenoids at different ripening stages in processing tomato in relation to soil water availability. Australian Journal of Agricultural Research, 59(4), 348–353. https://doi.org/10.1071/AR07215
Rodriguez-Amaya, D. B. (2001). A guide to carotenoid analysis in foods (Vol. 71). Washington: ILSI press. Retrieved from https://pdf.usaid.gov/pdf_docs/pnacq929.pdf
Sahu, A., Nayak, G., Bhuyan, S. K., Akbar, A., Bhuyan, R., Kar, D., & Kuanar, A. (2023). Artificial neural network and response surface-based combined approach to optimize the oil content of Ocimum basilicum var. thyrsiflora (Thai Basil). Plants, 12(9), 1776. https://doi.org/10.3390/plants12091776
Sahu, A., Nayak, G., Bhuyan, S. K., Bhuyan, R., Kar, D., & Kuanar, A. (2022). A comprehensive review on nutritive value, phytochemicals, and pharmacological activities of Ocimum basilicum var. thyrsiflora. Journal of Herbmed Pharmacology, 12(1), 1–12. https://doi.org/10.34172/jhp.2023.01
Sahu, A., Nayak, G., Bhuyan, S. K., Bhuyan, R., Kar, D., & Kuanar, A. (2024). Antioxidant and antimicrobial activities of Ocimum basilicum var. thyrsiflora against some oral microbes. Multidisciplinary Science Journal, 6(3), 2024026–2024026. https://10.31893/multiscience.2024026
Sales, M. D. C., Costa, H. B., Fernandes, P. M. B., Ventura, J. A., & Meira, D. D. (2016). Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pacific Journal of Tropical Biomedicine, 6(1), 26–31. https://doi.org/10.1016/j.apjtb.2015.09.026
Sidorova, D. E., Plyuta, V. A., Padiy, D. A., Kupriyanova, E. V., Roshina, N. V., Koksharova, O. A., & Khmel, I. A. (2021). The effect of volatile organic compounds on different organisms: Agrobacteria, plants and insects. Microorganisms, 10(1), 69. https://doi.org/10.3390/microorganisms10010069
Tleuova, A. B., Wielogorska, E., Talluri, V. S. S. L. P., Štěpánek, F., Elliott, C. T., & Grigoriev, D. O. (2020). Recent advances and remaining barriers to producing novel formulations of fungicides for safe and sustainable agriculture. Journal of Controlled Release, 326, 468–481. https://doi.org/10.1016/j.jconrel.2020.07.035
Umerie, S., Anaso, H., & Anyasoro, L. (1998). Insecticidal potentials of Ocimum basilicum leaf-extract. Bioresource Technology, 64(3), 237–239. https://doi.org/10.1016/S0960-8524(97)00188-0
Wallis, C. M., & Galarneau, E. R.-A. (2020). Phenolic compound induction in plant-microbe and plant-insect interactions: A meta-analysis. Frontiers in plant science, 11, 580753. https://doi.org/10.3389/fpls.2020.580753
Waterhouse, A. L. (2002). Determination of total phenolics. Current protocols in food analytical chemistry, 6(1), I1.1.1–I1.1.8. https://doi.org/10.1002/0471142913.fai0101s06
Wens, A., & Geuens, J. (2022). In vitro and in vivo antifungal activity of plant extracts against common phytopathogenic fungi. Journal of BioScience and Biotechnology, 11(1), 15–21. Retrieved from https://editorial.uni-plovdiv.bg/index.php/JBB/article/view/409
Wyenandt, C. A., Simon, J. E., McGrath, M. T., & Ward, D. L. (2010). Susceptibility of basil cultivars and breeding lines to downy mildew (Peronospora belbahrii). HortScience, 45(9), 1416–1419. https://doi.org/10.21273/HORTSCI.45.9.1416
Xiao, F., Xu, T., Lu, B., & Liu, R. (2020). Guidelines for antioxidant assays for food components. Food Frontiers, 1(1), 60–69. https://doi.org/10.1002/fft2.10
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2
Refbacks
- There are currently no refbacks.