Carbon Stock, Carbon Fraction and Nitrogen Fraction of Soil Under Bamboo (Dendrocalamus asper Back.) and Non-Bamboo Vegetation

Lintang Panjali Siwi Pambayun, Benito Heru Purwanto, Sri Nuryani Hidayah Utami

Abstract

The type of vegetation and soil organic matter affect the carbon fraction, nitrogen fraction and soil carbon stocks that contribute to the global carbon cycle. Therefore, the calculation of the composition of the fractions in different land covers is very important as a potential indicator of the effect of land management practices on soil organic carbon dynamics and supports the reduction of carbon dioxide (CO2) and soil carbon storage. This research aimed to determine the composition of the carbon fraction, nitrogen fraction and soil carbon stock in different land cover. There were six types of land cover with vegetations of 10-year-old bamboo, 30-year-old bamboo, 50-year-old bamboo, bulrush, a mixture of brushwood and bulrush, and a mixture of Albizia falcataria and brushwood, each of which was sampled three times. Soil samples were used to determine microbial biomass, particulate organic, humic acid, fulvic acid and soil carbon stock. The six land cover types showed significant differences in all fractions and soil carbon stocks. Fifty-year-old bamboo vegetation has the highest carbon storage of 0.029 g g-1 soil. The stable carbon fraction, in the form of humic acid and fulvic acid, in 50-year-old bamboo vegetation is more excellent than that in other vegetation. This study shows that 50-year-old bamboo vegetation has the potential to sequester carbon and store carbon in forms that decompose slowly, namely humic acid and fulvic acid, in the soil for a longer period.

Keywords

carbon dynamics; carbon storage; nitrogen labile; soil organic carbon; vegetation

Full Text:

PDF

References

Ahima, R. S. (2020). Global warming threatens human thermoregulation and survival. Journal of Clinical Investigation, 130(2), 559–561. https://doi.org/10.1172/JCI135006

Ampong, K., Thilakaranthna, M. S., & Gorim, L. Y. (2022). Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy, 4, 848621. https://doi.org/10.3389/fagro.2022.848621

Anaba, B. D., Yemefack, M., Abossolo-Angue, M., Ntsomboh-Ntsefong, G., Bilong, E. G., Ngando Ebongue, G. F., & Bell, J. M. (2020). Soil texture and watering impact on pot recovery of soil-stripped oil palm (Elaeis guineensis Jacq.) seedlings. Heliyon, 6(10), e05310. https://doi.org/10.1016/j.heliyon.2020.e05310

Anderson, T. R., Hawkins, E., & Jones, P. D. (2016). CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s earth system models. Endeavour, 40(3), 178–187. https://doi.org/10.1016/j.endeavour.2016.07.002

Athira, M., Jagadeeswaran, R., & Kumaraperumal, R. (2019). Influence of soil organic matter on bulk density in Coimbatore soils. International Journal of Chemical Studies, 7(3), 3520–3523. Retrieved from https://www.chemijournal.com/archives/?year=2019&vol=7&issue=3&ArticleId=6059&si=false

Babur, E., Dindaroğlu, T., Solaiman, Z. M., & Battaglia, M. L. (2021). Microbial respiration, microbial biomass and activity are highly sensitive to forest tree species and seasonal patterns in the Eastern Mediterranean Karst ecosystems. Science of the Total Environment, 775, 145868. https://doi.org/10.1016/j.scitotenv.2021.145868

Bargali, K., Manral, V., Padalia, K., Bargali, S. S., & Upadhyay, V. P. (2018). Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. Catena, 171, 125–135. https://doi.org/10.1016/j.catena.2018.07.001

Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x

Bu, R., Lu, J., Ren, T., Liu, B., Li, X., & Cong, R. (2015). Particulate organic matter affects soil nitrogen mineralization under two crop rotation systems. PLoS ONE, 10(12), e0143835. https://doi.org/10.1371/journal.pone.0143835

Buraka, T., Elias, E., & Lelago, A. (2022). Soil organic carbon and its’ stock potential in different land-use types along slope position in Coka watershed, Southern Ethiopia. Heliyon, 8(8), e10261. https://doi.org/10.1016/j.heliyon.2022.e10261

Chakraborty, K., & Mistri, B. (2015). Importance of soil texture in sustenance of agriculture: A study in Burdwan-I CD Block, Burdwan, West Bengal. Eastern Geographer, 21(1), 475–482. Retrieved from https://lms.su.edu.pk/download?filename=1602870497-importanceofsoiltextureinsustenanceofagriculture.pdf&lesson=33447

Chan, K. Y. (2003). Soil particulate organic carbon under different land use and management. Soil Use and Management, 17(4), 217–221. https://doi.org/10.1111/j.1475-2743.2001.tb00030.x

Desrochers, J., Brye, K. R., Gbur, E., Pollock, E. D., & Savin, M. C. (2020). Carbon and nitrogen properties of particulate organic matter fractions in an Alfisol in the mid-Southern, USA. Geoderma Regional, 20, e00248. https://doi.org/10.1016/j.geodrs.2019.e00248

Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293–297. https://doi.org/10.1038/ngeo1123

Dong, L., Liu, Y., Wu, J., Liao, Y., Li, J., Yu, J., Wang, S., Yu, Z., Shangguan, Z., & Deng, L. (2023). The distribution of soil C and N along the slope is regulated by vegetation type on the Loess Plateau. Catena, 226, 107094. https://doi.org/10.1016/j.catena.2023.107094

Dwivedi, A. K., Kumar, A., Baredar, P., & Prakash, O. (2019). Bamboo as a complementary crop to address climate change and livelihoods – Insights from India. Forest Policy and Economics, 102, 66–74. https://doi.org/10.1016/j.forpol.2019.02.007

Fang, H., Rong, H., Hallett, P. D., Mooney, S. J., Zhang, W., & Zhou, H. (2019). Impact of soil puddling intensity on the root system architecture of rice (Oryza sativa L.). Soil and Tillage Research, 193, 1–7. https://doi.org/10.1016/j.still.2019.05.022

FAO. (2018). Measuring and modelling soil carbon stocks and stock changes in livestock production systems–Guidelines for assessment (Draft for public review). Rome, Italy: Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/3/I9693EN/i9693en.pdf

Frazão, L. A., Cardoso, P. H. S., Almeida Neta, M. N., Mota, M. F. C., Almeida, L. L. D. S., Ribeiro, J. M., Bicalho, T. F., & Feigl, B. J. (2021). Carbon and nitrogen stocks and organic matter fractions in the topsoil of traditional and agrisilvicultural systems in the Southeast of Brazil. Soil Research, 59(8), 794–805. https://doi.org/10.1071/SR20150

Gao, X., Liu, X., Ma, L., & Wang, R. (2020). Root vertical distributions of two Artemisia species and their relationships with soil resources in the Hunshandake desert, China. Ecology and Evolution, 10(6), 3112–3119. https://doi.org/10.1002/ece3.6135

Gautam, R. K., Navaratna, D., Muthukumaran, S., Singh, A., Islamuddin, & More, N. (2021). Humic substances: Its toxicology, chemistry and biology associated with soil, plants and environment. IntechOpen. https://doi.org/10.5772/intechopen.98518

Gerke, J. (2022). The central role of soil organic matter in soil fertility and carbon storage. Soil Systems, 6(2), 33. https://doi.org/10.3390/soilsystems6020033

Graham, E. R. (1948). Determination of soil organic matter by means of a photoelectric colorimeter. Soil Science, 65(2), 181–184. https://doi.org/10.1097/00010694-194802000-00004

Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92(11), 1450–1457. https://doi.org/10.1016/j.chemosphere.2013.03.055

Huang, H., Jin, S., & Yamamoto, H. (2011). Study on strength characteristics of reinforced soil by cement and bamboo chips. Applied Mechanics and Materials, 71–78, 1250–1254. https://doi.org/10.4028/www.scientific.net/AMM.71-78.1250

Huntingford, C., Burke, E. J., Jones, C. D., Jeffers, E. S., & Wiltshire, A. J. (2022). Nitrogen cycle impacts on CO2 fertilisation and climate forcing of land carbon stores. Environmental Research Letters, 17(4), 044072. https://doi.org/10.1088/1748-9326/ac6148

ISRIC. (1993). Procedures for analysis, sixth edition. Wageningen, The Netherlands: International Soil Reference and Information Centre. Retrieved from https://www.isric.org/sites/default/files/ISRIC_TechPap09.pdf

Jones, D. L., Magthab, E. A., Gleeson, D. B., Hill, P. W., Sánchez-Rodríguez, A. R., Roberts, P., Ge, T., & Murphy, D. V. (2018). Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biology and Biochemistry, 117, 72–82. https://doi.org/10.1016/j.soilbio.2017.10.024

Juhos, K., Madarász, B., Kotroczó, Z., Béni, Á., Makádi, M., & Fekete, I. (2021). Carbon sequestration of forest soils is reflected by changes in physicochemical soil indicators ─ A comprehensive discussion of a long-term experiment on a detritus manipulation. Geoderma, 385, 114918. https://doi.org/10.1016/j.geoderma.2020.114918

Khorramdel, S., Shabahang, J., Ahmadzadeh Ghavidel, R., & Mollafilabi, A. (2019). Evaluation of carbon sequestration and global warming potential of wheat in Khorasan-Razavi province. AgriTECH, 38(3), 330. https://doi.org/10.22146/agritech.28430

King, C., Van Der Lugt, P., Long, T. T., & Yanxia, L. (2021). Integration of bamboo forestry into carbon markets. International Bamboo and Rattan Organisation (INBAR). Retrieved from https://research.tudelft.nl/files/90321914/Mar_2021_Integration_of_Bamboo_Forestry_into_Carbon_Markets_2.pdf

Kõlli, R., & Rannik, K. (2018). Matching estonian humus cover types’ (pro humus forms’) and soils’ classifications. Applied Soil Ecology, 123, 627–631. https://doi.org/10.1016/j.apsoil.2017.09.038

Kushwaha, C. P., Tripathi, S. K., & Singh, K. P. (2000). Variations in soil microbial biomass and N availability due to residue and tillage management in a dryland rice agroecosystem. Soil and Tillage Research, 56(3–4), 153–166. https://doi.org/10.1016/S0167-1987(00)00135-5

Kusumawati, A., Hanudin, E., Purwanto, B. H., & Nurudin, M. (2020). Composition of organic C fractions in soils of different texture affected by sugarcane monoculture. Soil Science and Plant Nutrition, 66(1), 206–213. https://doi.org/10.1080/00380768.2019.1705740

Kwiatkowski, C. A., Pawłowska, M., Harasim, E., & Pawłowski, L. (2023). Strategies of climate change mitigation in agriculture plant production—A critical review. Energies, 16(10), 4225. https://doi.org/10.3390/en16104225

Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1–2), 1–22. https://doi.org/10.1016/j.geoderma.2004.01.032

Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220(1–3), 242–258. https://doi.org/10.1016/j.foreco.2005.08.015

Lal, R., Negassa, W., & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15, 79–86. https://doi.org/10.1016/j.cosust.2015.09.002

Lepcha, N. T., & Devi, N. B. (2020). Effect of land use, season, and soil depth on soil microbial biomass carbon of Eastern Himalayas. Ecological Processes, 9(1), 1–14. https://doi.org/10.1186/s13717-020-00269-y

Li, P., Zhou, G., Du, H., Lu, D., Mo, L., Xu, X., Shi, Y., & Zhou, Y. (2015). Current and potential carbon stocks in Moso bamboo forests in China. Journal of Environmental Management, 156, 89–96. https://doi.org/10.1016/j.jenvman.2015.03.030

Lobovikov, M., Schoene, D., & Yping, L. (2012). Bamboo in climate change and rural livelihoods. Mitigation and Adaptation Strategies for Global Change, 17(3), 261–276. https://doi.org/10.1007/s11027-011-9324-8

Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., Xu, S., Yuan, G., Chen, X., Zhang, X., Liu, D., Song, Z., Liu, X., & Wang, H. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management, 186, 285–292. https://doi.org/10.1016/j.jenvman.2016.05.068

Lu, X., Hou, E., Guo, J., Gilliam, F. S., Li, J., Tang, S., & Kuang, Y. (2021). Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: A meta-analysis. Global Change Biology, 27(12), 2780–2792. https://doi.org/10.1111/gcb.15604

Marriott, E. E., & Wander, M. M. (2006). Total and labile soil organic matter in organic and conventional farming systems. Soil Science Society of America Journal, 70(3), 950–959. https://doi.org/10.2136/sssaj2005.0241

Martínez, J. M., Galantini, J. A., Duval, M. E., & López, F. M. (2017). Tillage effects on labile pools of soil organic nitrogen in a semi-humid climate of Argentina: A long-term field study. Soil and Tillage Research, 169(3), 71–80. https://doi.org/10.1016/j.still.2017.02.001

Maulana, M. I., Marwanto, M., Nawawi, D. S., Nikmatin, S., Febrianto, F., & Kim, N. H. (2020). Chemical components content of seven Indonesian bamboo species. IOP Conference Series: Materials Science and Engineering, 935(1), 012028. https://doi.org/10.1088/1757-899X/935/1/012028

Mehmet Tuğrul, K. (2020). Soil management in sustainable agriculture. Sustainable Crop Production. IntechOpen. https://doi.org/10.5772/intechopen.88319

Meng, D., Cheng, H., Shao, Y., Luo, M., Xu, D., Liu, Z., & Ma, L. (2022). Progress on the effect of nitrogen on transformation of soil organic carbon. Processes, 10(11), 2425. https://doi.org/10.3390/pr10112425

Moore, J. M., Klose, S., & Tabatabai, M. A. (2000). Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biology and Fertility of Soils, 31(3–4), 200–210. https://doi.org/10.1007/s003740050646

Muhie, S. H. (2022). Novel approaches and practices to sustainable agriculture. Journal of Agriculture and Food Research, 10, 100446. https://doi.org/10.1016/j.jafr.2022.100446

Nath, A. J., Das, G., & Das, A. K. (2009). Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass and Bioenergy, 33(9), 1188–1196. https://doi.org/10.1016/j.biombioe.2009.05.020

Nesic, L., Vasin, J., Belic, M., Ciric, V., Gligorijevic, J., Milunovic, K., & Sekulic, P. (2015). The colloid fraction and cation-exchange capacity in the soils of Vojvodina, Serbia. Ratarstvo i Povrtarstvo, 52(1), 18–23. https://doi.org/10.5937/ratpov52-7720

Olson, K. R., & Al-Kaisi, M. M. (2015). The importance of soil sampling depth for accurate account of soil organic carbon sequestration, storage, retention and loss. Catena, 125, 33–37. https://doi.org/10.1016/j.catena.2014.10.004

Ontl, T. A., Cambardella, C. A., Schulte, L. A., & Kolka, R. K. (2015). Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient. Geoderma, 255–256, 1–11. https://doi.org/10.1016/j.geoderma.2015.04.016

Qian, Z., Sun, X., Gao, J., & Zhuang, S. (2021). Effects of bamboo (Phyllostachys praecox) cultivation on soil nitrogen fractions and mineralization. Forests, 12(8), 1109. https://doi.org/10.3390/f12081109

Qin, H., Niu, L., Wu, Q., Chen, J., Li, Y., Liang, C., Xu, Q., Fuhrmann, J. J., & Shen, Y. (2017). Bamboo forest expansion increases soil organic carbon through its effect on soil arbuscular mycorrhizal fungal community and abundance. Plant and Soil, 420(1–2), 407–421. https://doi.org/10.1007/s11104-017-3415-6

Rahmadaniarti, A., & Mofu, W. Y. (2020). Chemical compounds and decomposition process from four species leaf litter as a source of organic matter soil in Anggori Education Forest, Manokwari. Journal of Sylva Indonesiana, 3(02), 60–67. https://doi.org/10.32734/jsi.v3i02.2848

Rahman, N. S. N. A., Hamid, N. W. A., & Nadarajah, K. (2021). Effects of abiotic stress on soil microbiome. International Journal of Molecular Sciences, 22(16), 9036. https://doi.org/10.3390/ijms22169036

Saputri, D. A., Kamelia, M., Widiani, N., & Hermawan, A. (2021). Effect of bamboo (Dendrocalamus asper Back.) shoot liquid organic fertilizer on growth of pre-anthesis cayenne pepper (Capsicum frutescens L.) by hydroponics. Jurnal Biota, 7(1), 17–24. https://doi.org/10.19109/biota.v7i1.5436

Schmid, I., & Kazda, M. (2002). Root distribution of Norway spruce in monospecific and mixed stands on different soils. Forest Ecology and Management, 159(1–2), 37–47. https://doi.org/10.1016/S0378-1127(01)00708-3

Semenov, V. M., Lebedeva, T. N., & Pautova, N. B. (2019). Particulate organic matter in noncultivated and arable soils. Eurasian Soil Science, 52(4), 396–404. https://doi.org/10.1134/S1064229319040136

Shapkota, J., & Kafle, G. (2021). Variation in soil organic carbon under different forest types in Shivapuri Nagarjun National Park, Nepal. Scientifica, 2021, 1382687. https://doi.org/10.1155/2021/1382687

Shi, J., Mao, S., Wang, L., Ye, X., Wu, J., Wang, G., Chen, F., & Yang, Q. (2021). Clonal integration driven by source-sink relationships is constrained by rhizome branching architecture in a running bamboo species (Phyllostachys glauca): A 15N assessment in the field. Forest Ecology and Management, 481, 118754. https://doi.org/10.1016/j.foreco.2020.118754

Sible, C. N., Seebauer, J. R., & Below, F. E. (2021). Plant biostimulants: A categorical review, their implications for row crop production, and relation to soil health indicators. Agronomy, 11(7), 1297. https://doi.org/10.3390/agronomy11071297

Sijabat, L. M. T., Nurudin, M., Notohadisuwarno, S., & Utami, S. N. H. (2018). Labile carbon fraction, humic acid, and fulvic acid on organic and conventional farming of rice field in Imogiri and Berbah. IOP Conference Series: Earth and Environmental Science, 215(1), 012005. https://doi.org/10.1088/1755-1315/215/1/012005

Sofiah, S., Setiadi, D., & Widyatmoko, D. (2018). The influence of edaphic factors on bamboo population in Mount Baung Natural Tourist Park, Pasuruan, East Java, Indonesia. Tropical Drylands, 2(1), 12–17. https://doi.org/10.13057/tropdrylands/t020103

Sohel, M. S. I., Alamgir, M., Akhter, S., & Rahman, M. (2015). Carbon storage in a bamboo (Bambusa vulgaris) plantation in the degraded tropical forests: Implications for policy development. Land Use Policy, 49, 142–151. https://doi.org/10.1016/j.landusepol.2015.07.011

Song, X., Zhou, G., Jiang, H., Yu, S., Fu, J., Li, W., Wang, W., Ma, Z., & Peng, C. (2011). Carbon sequestration by Chinese bamboo forests and their ecological benefits: Assessment of potential, problems, and future challenges. Environmental Reviews, 19(1), 418–428. https://doi.org/10.1139/a11-015

Sootahar, M. K., Zeng, X., Su, S., Wang, Y., Bai, L., Zhang, Y., Li, T., & Zhang, X. (2019). The effect of fulvic acids derived from different materials on changing properties of albic black soil in the Northeast Plain of China. Molecules, 24(8), 1535. https://doi.org/10.3390/molecules24081535

Sujarwo, W. (2016). Stand biomass and carbon storage of bamboo forest in Penglipuran traditional village, Bali (Indonesia). Journal of Forestry Research, 27(4), 913–917. https://doi.org/10.1007/s11676-016-0227-0

Syamsiyah, J., Sunarminto, B. H., Hanudin, E., Widada, J., & Mujiyo. (2019). Carbon dioxide emission and carbon sequestration potential in Alfisol. Bulgarian Journal of Agricultural Science, 25(1), 42–48. Retrieved from https://www.agrojournal.org/25/01-06.pdf

Voroney, R. P., Brookes, C. P., & Beyaert, R. P. (2007). Soil microbial biomass C, N, P, and S. Soil Sampling and Methods of Analysis: Second Edition (pp. 293–306). Florida, USA: CRC Press. https://doi.org/10.1201/9781420005271-33

Wang, C., Alidoust, D., Yang, X., & Isoda, A. (2018). Effects of bamboo biochar on soybean root nodulation in multi-elements contaminated soils. Ecotoxicology and Environmental Safety, 150, 62–69. https://doi.org/10.1016/j.ecoenv.2017.12.036

Wang, H., Boutton, T. W., Xu, W., Hu, G., Jiang, P., & Bai, E. (2015). Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes. Scientific Reports, 5(1), 1–13. https://doi.org/10.1038/srep10102

Wang, J., & Sainju, U. M. (2014). Soil carbon and nitrogen fractions and crop yields affected by residue placement and crop types. PLoS ONE, 9(8), e0105039. https://doi.org/10.1371/journal.pone.0105039

Wang, Y., Shao, M., Zhang, C., Liu, Z., Zou, J., & Xiao, J. (2015). Soil organic carbon in deep profiles under Chinese continental monsoon climate and its relations with land uses. Ecological Engineering, 82, 361–367. https://doi.org/10.1016/j.ecoleng.2015.05.004

Wei, X., Yang, Y., Shen, Y., Chen, Z., Dong, Y., Wu, F., & Zhang, L. (2020). Effects of litterfall on the accumulation of extracted soil humic substances in subalpine forests. Frontiers in Plant Science, 11, 467834. https://doi.org/10.3389/fpls.2020.00254

Wijanarko, A., & Purwanto, B. H. (2017). Effect of land use and organic matter on nitrogen and carbon labile fractions in a Typic Hapludult. Journal of Degraded and Mining Lands Management, 04(03), 837–843. https://doi.org/10.15243/jdmlm.2017.043.837

Wong, M. T. F., & Swift, R. S. (2001). Application of fresh and humified organic matter to ameliorate soil acidity. Proceedings of the 9th International Conference of the International Humic Substance Society, 235–242. Retrieved from https://espace.library.uq.edu.au/view/UQ:96857

Wu, W., Chen, G., Meng, T., Li, C., Feng, H., Si, B., & Siddique, K. H. M. (2023). Effect of different vegetation restoration on soil properties in the semi-arid Loess Plateau of China. Catena, 220, 106630. https://doi.org/10.1016/j.catena.2022.106630

Xiao, L., Li, C., Cai, Y., Zhou, T., Zhou, M., Gao, X., Shi, Y., Du, H., Zhou, G., & Zhou, Y. (2021). Interactions between soil properties and the rhizome-root distribution in a 12-year Moso bamboo reforested region: Combining ground-penetrating radar and soil coring in the field. Science of the Total Environment, 800, 149467. https://doi.org/10.1016/j.scitotenv.2021.149467

Xing, T., Cai, A., Lu, C., Ye, H., Wu, H., Huai, S., Wang, J., Xu, M., & Lin, Q. (2022). Increasing soil microbial biomass nitrogen in crop rotation systems by improving nitrogen resources under nitrogen application. Journal of Integrative Agriculture, 21(5), 1488–1500. https://doi.org/10.1016/S2095-3119(21)63673-0

Yang, C. H., Chai, Q., & Huang, G. B. (2010). Root distribution and yield responses of wheat/maize intercropping to alternate irrigation in the arid areas of northwest China. Plant, Soil and Environment, 56(6), 253–262. https://doi.org/10.17221/251/2009-pse

Yang, L., Liu, W., Jia, Z., Li, P., Wu, Y., Chen, Y., Liu, C., Chang, P., & Liu, L. (2022). Land-use change reduces soil nitrogen retention of both particulate and mineral-associated organic matter in a temperate grassland. Catena, 216, 106432. https://doi.org/10.1016/j.catena.2022.106432

Yiping, L., Yanxia, L., Buckingham, K., Henley, G., & Guomo, Z. (2010). Bamboo and climate change mitigation: A comparative analysis of carbon sequestration. Technical Report No. 32. China: International Network for Bamboo and Rattan. Retrieved from https://forestindustries.eu/sites/default/files/userfiles/1file/bamboo-TR32.pdf

Zachariah, E. J., Sabulal, B., Nair, D. N. K., Johnson, A. J., & Kumar, C. S. P. (2016). Carbon dioxide emission from bamboo culms. Plant Biology, 18(3), 400–405. https://doi.org/10.1111/plb.12435

Zhang, L., Chen, X., Xu, Y., Jin, M., Ye, X., Gao, H., Chu, W., Mao, J., & Thompson, M. L. (2020). Soil labile organic carbon fractions and soil enzyme activities after 10 years of continuous fertilization and wheat residue incorporation. Scientific Reports, 10, 11318. https://doi.org/10.1038/s41598-020-68163-3

Zhou, D., Zhao, S. Q., Liu, S., & Oeding, J. (2013). A meta-analysis on the impacts of partial cutting on forest structure and carbon storage. Biogeosciences, 10(6), 3691–3703. https://doi.org/10.5194/bg-10-3691-2013

Refbacks

  • There are currently no refbacks.