Carbon Stock, Carbon Fraction and Nitrogen Fraction of Soil Under Bamboo (Dendrocalamus asper Back.) and Non-Bamboo Vegetation
Abstract
Keywords
Full Text:
PDFReferences
Ahima, R. S. (2020). Global warming threatens human thermoregulation and survival. Journal of Clinical Investigation, 130(2), 559–561. https://doi.org/10.1172/JCI135006
Ampong, K., Thilakaranthna, M. S., & Gorim, L. Y. (2022). Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy, 4, 848621. https://doi.org/10.3389/fagro.2022.848621
Anaba, B. D., Yemefack, M., Abossolo-Angue, M., Ntsomboh-Ntsefong, G., Bilong, E. G., Ngando Ebongue, G. F., & Bell, J. M. (2020). Soil texture and watering impact on pot recovery of soil-stripped oil palm (Elaeis guineensis Jacq.) seedlings. Heliyon, 6(10), e05310. https://doi.org/10.1016/j.heliyon.2020.e05310
Anderson, T. R., Hawkins, E., & Jones, P. D. (2016). CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s earth system models. Endeavour, 40(3), 178–187. https://doi.org/10.1016/j.endeavour.2016.07.002
Athira, M., Jagadeeswaran, R., & Kumaraperumal, R. (2019). Influence of soil organic matter on bulk density in Coimbatore soils. International Journal of Chemical Studies, 7(3), 3520–3523. Retrieved from https://www.chemijournal.com/archives/?year=2019&vol=7&issue=3&ArticleId=6059&si=false
Babur, E., Dindaroğlu, T., Solaiman, Z. M., & Battaglia, M. L. (2021). Microbial respiration, microbial biomass and activity are highly sensitive to forest tree species and seasonal patterns in the Eastern Mediterranean Karst ecosystems. Science of the Total Environment, 775, 145868. https://doi.org/10.1016/j.scitotenv.2021.145868
Bargali, K., Manral, V., Padalia, K., Bargali, S. S., & Upadhyay, V. P. (2018). Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. Catena, 171, 125–135. https://doi.org/10.1016/j.catena.2018.07.001
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464–465. https://doi.org/10.2134/agronj1962.00021962005400050028x
Bu, R., Lu, J., Ren, T., Liu, B., Li, X., & Cong, R. (2015). Particulate organic matter affects soil nitrogen mineralization under two crop rotation systems. PLoS ONE, 10(12), e0143835. https://doi.org/10.1371/journal.pone.0143835
Buraka, T., Elias, E., & Lelago, A. (2022). Soil organic carbon and its’ stock potential in different land-use types along slope position in Coka watershed, Southern Ethiopia. Heliyon, 8(8), e10261. https://doi.org/10.1016/j.heliyon.2022.e10261
Chakraborty, K., & Mistri, B. (2015). Importance of soil texture in sustenance of agriculture: A study in Burdwan-I CD Block, Burdwan, West Bengal. Eastern Geographer, 21(1), 475–482. Retrieved from https://lms.su.edu.pk/download?filename=1602870497-importanceofsoiltextureinsustenanceofagriculture.pdf&lesson=33447
Chan, K. Y. (2003). Soil particulate organic carbon under different land use and management. Soil Use and Management, 17(4), 217–221. https://doi.org/10.1111/j.1475-2743.2001.tb00030.x
Desrochers, J., Brye, K. R., Gbur, E., Pollock, E. D., & Savin, M. C. (2020). Carbon and nitrogen properties of particulate organic matter fractions in an Alfisol in the mid-Southern, USA. Geoderma Regional, 20, e00248. https://doi.org/10.1016/j.geodrs.2019.e00248
Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293–297. https://doi.org/10.1038/ngeo1123
Dong, L., Liu, Y., Wu, J., Liao, Y., Li, J., Yu, J., Wang, S., Yu, Z., Shangguan, Z., & Deng, L. (2023). The distribution of soil C and N along the slope is regulated by vegetation type on the Loess Plateau. Catena, 226, 107094. https://doi.org/10.1016/j.catena.2023.107094
Dwivedi, A. K., Kumar, A., Baredar, P., & Prakash, O. (2019). Bamboo as a complementary crop to address climate change and livelihoods – Insights from India. Forest Policy and Economics, 102, 66–74. https://doi.org/10.1016/j.forpol.2019.02.007
Fang, H., Rong, H., Hallett, P. D., Mooney, S. J., Zhang, W., & Zhou, H. (2019). Impact of soil puddling intensity on the root system architecture of rice (Oryza sativa L.). Soil and Tillage Research, 193, 1–7. https://doi.org/10.1016/j.still.2019.05.022
FAO. (2018). Measuring and modelling soil carbon stocks and stock changes in livestock production systems–Guidelines for assessment (Draft for public review). Rome, Italy: Food and Agriculture Organization of the United Nations. Retrieved from http://www.fao.org/3/I9693EN/i9693en.pdf
Frazão, L. A., Cardoso, P. H. S., Almeida Neta, M. N., Mota, M. F. C., Almeida, L. L. D. S., Ribeiro, J. M., Bicalho, T. F., & Feigl, B. J. (2021). Carbon and nitrogen stocks and organic matter fractions in the topsoil of traditional and agrisilvicultural systems in the Southeast of Brazil. Soil Research, 59(8), 794–805. https://doi.org/10.1071/SR20150
Gao, X., Liu, X., Ma, L., & Wang, R. (2020). Root vertical distributions of two Artemisia species and their relationships with soil resources in the Hunshandake desert, China. Ecology and Evolution, 10(6), 3112–3119. https://doi.org/10.1002/ece3.6135
Gautam, R. K., Navaratna, D., Muthukumaran, S., Singh, A., Islamuddin, & More, N. (2021). Humic substances: Its toxicology, chemistry and biology associated with soil, plants and environment. IntechOpen. https://doi.org/10.5772/intechopen.98518
Gerke, J. (2022). The central role of soil organic matter in soil fertility and carbon storage. Soil Systems, 6(2), 33. https://doi.org/10.3390/soilsystems6020033
Graham, E. R. (1948). Determination of soil organic matter by means of a photoelectric colorimeter. Soil Science, 65(2), 181–184. https://doi.org/10.1097/00010694-194802000-00004
Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere, 92(11), 1450–1457. https://doi.org/10.1016/j.chemosphere.2013.03.055
Huang, H., Jin, S., & Yamamoto, H. (2011). Study on strength characteristics of reinforced soil by cement and bamboo chips. Applied Mechanics and Materials, 71–78, 1250–1254. https://doi.org/10.4028/www.scientific.net/AMM.71-78.1250
Huntingford, C., Burke, E. J., Jones, C. D., Jeffers, E. S., & Wiltshire, A. J. (2022). Nitrogen cycle impacts on CO2 fertilisation and climate forcing of land carbon stores. Environmental Research Letters, 17(4), 044072. https://doi.org/10.1088/1748-9326/ac6148
ISRIC. (1993). Procedures for analysis, sixth edition. Wageningen, The Netherlands: International Soil Reference and Information Centre. Retrieved from https://www.isric.org/sites/default/files/ISRIC_TechPap09.pdf
Jones, D. L., Magthab, E. A., Gleeson, D. B., Hill, P. W., Sánchez-Rodríguez, A. R., Roberts, P., Ge, T., & Murphy, D. V. (2018). Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biology and Biochemistry, 117, 72–82. https://doi.org/10.1016/j.soilbio.2017.10.024
Juhos, K., Madarász, B., Kotroczó, Z., Béni, Á., Makádi, M., & Fekete, I. (2021). Carbon sequestration of forest soils is reflected by changes in physicochemical soil indicators ─ A comprehensive discussion of a long-term experiment on a detritus manipulation. Geoderma, 385, 114918. https://doi.org/10.1016/j.geoderma.2020.114918
Khorramdel, S., Shabahang, J., Ahmadzadeh Ghavidel, R., & Mollafilabi, A. (2019). Evaluation of carbon sequestration and global warming potential of wheat in Khorasan-Razavi province. AgriTECH, 38(3), 330. https://doi.org/10.22146/agritech.28430
King, C., Van Der Lugt, P., Long, T. T., & Yanxia, L. (2021). Integration of bamboo forestry into carbon markets. International Bamboo and Rattan Organisation (INBAR). Retrieved from https://research.tudelft.nl/files/90321914/Mar_2021_Integration_of_Bamboo_Forestry_into_Carbon_Markets_2.pdf
Kõlli, R., & Rannik, K. (2018). Matching estonian humus cover types’ (pro humus forms’) and soils’ classifications. Applied Soil Ecology, 123, 627–631. https://doi.org/10.1016/j.apsoil.2017.09.038
Kushwaha, C. P., Tripathi, S. K., & Singh, K. P. (2000). Variations in soil microbial biomass and N availability due to residue and tillage management in a dryland rice agroecosystem. Soil and Tillage Research, 56(3–4), 153–166. https://doi.org/10.1016/S0167-1987(00)00135-5
Kusumawati, A., Hanudin, E., Purwanto, B. H., & Nurudin, M. (2020). Composition of organic C fractions in soils of different texture affected by sugarcane monoculture. Soil Science and Plant Nutrition, 66(1), 206–213. https://doi.org/10.1080/00380768.2019.1705740
Kwiatkowski, C. A., Pawłowska, M., Harasim, E., & Pawłowski, L. (2023). Strategies of climate change mitigation in agriculture plant production—A critical review. Energies, 16(10), 4225. https://doi.org/10.3390/en16104225
Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1–2), 1–22. https://doi.org/10.1016/j.geoderma.2004.01.032
Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220(1–3), 242–258. https://doi.org/10.1016/j.foreco.2005.08.015
Lal, R., Negassa, W., & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15, 79–86. https://doi.org/10.1016/j.cosust.2015.09.002
Lepcha, N. T., & Devi, N. B. (2020). Effect of land use, season, and soil depth on soil microbial biomass carbon of Eastern Himalayas. Ecological Processes, 9(1), 1–14. https://doi.org/10.1186/s13717-020-00269-y
Li, P., Zhou, G., Du, H., Lu, D., Mo, L., Xu, X., Shi, Y., & Zhou, Y. (2015). Current and potential carbon stocks in Moso bamboo forests in China. Journal of Environmental Management, 156, 89–96. https://doi.org/10.1016/j.jenvman.2015.03.030
Lobovikov, M., Schoene, D., & Yping, L. (2012). Bamboo in climate change and rural livelihoods. Mitigation and Adaptation Strategies for Global Change, 17(3), 261–276. https://doi.org/10.1007/s11027-011-9324-8
Lu, K., Yang, X., Gielen, G., Bolan, N., Ok, Y. S., Niazi, N. K., Xu, S., Yuan, G., Chen, X., Zhang, X., Liu, D., Song, Z., Liu, X., & Wang, H. (2017). Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Journal of Environmental Management, 186, 285–292. https://doi.org/10.1016/j.jenvman.2016.05.068
Lu, X., Hou, E., Guo, J., Gilliam, F. S., Li, J., Tang, S., & Kuang, Y. (2021). Nitrogen addition stimulates soil aggregation and enhances carbon storage in terrestrial ecosystems of China: A meta-analysis. Global Change Biology, 27(12), 2780–2792. https://doi.org/10.1111/gcb.15604
Marriott, E. E., & Wander, M. M. (2006). Total and labile soil organic matter in organic and conventional farming systems. Soil Science Society of America Journal, 70(3), 950–959. https://doi.org/10.2136/sssaj2005.0241
Martínez, J. M., Galantini, J. A., Duval, M. E., & López, F. M. (2017). Tillage effects on labile pools of soil organic nitrogen in a semi-humid climate of Argentina: A long-term field study. Soil and Tillage Research, 169(3), 71–80. https://doi.org/10.1016/j.still.2017.02.001
Maulana, M. I., Marwanto, M., Nawawi, D. S., Nikmatin, S., Febrianto, F., & Kim, N. H. (2020). Chemical components content of seven Indonesian bamboo species. IOP Conference Series: Materials Science and Engineering, 935(1), 012028. https://doi.org/10.1088/1757-899X/935/1/012028
Mehmet Tuğrul, K. (2020). Soil management in sustainable agriculture. Sustainable Crop Production. IntechOpen. https://doi.org/10.5772/intechopen.88319
Meng, D., Cheng, H., Shao, Y., Luo, M., Xu, D., Liu, Z., & Ma, L. (2022). Progress on the effect of nitrogen on transformation of soil organic carbon. Processes, 10(11), 2425. https://doi.org/10.3390/pr10112425
Moore, J. M., Klose, S., & Tabatabai, M. A. (2000). Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biology and Fertility of Soils, 31(3–4), 200–210. https://doi.org/10.1007/s003740050646
Muhie, S. H. (2022). Novel approaches and practices to sustainable agriculture. Journal of Agriculture and Food Research, 10, 100446. https://doi.org/10.1016/j.jafr.2022.100446
Nath, A. J., Das, G., & Das, A. K. (2009). Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass and Bioenergy, 33(9), 1188–1196. https://doi.org/10.1016/j.biombioe.2009.05.020
Nesic, L., Vasin, J., Belic, M., Ciric, V., Gligorijevic, J., Milunovic, K., & Sekulic, P. (2015). The colloid fraction and cation-exchange capacity in the soils of Vojvodina, Serbia. Ratarstvo i Povrtarstvo, 52(1), 18–23. https://doi.org/10.5937/ratpov52-7720
Olson, K. R., & Al-Kaisi, M. M. (2015). The importance of soil sampling depth for accurate account of soil organic carbon sequestration, storage, retention and loss. Catena, 125, 33–37. https://doi.org/10.1016/j.catena.2014.10.004
Ontl, T. A., Cambardella, C. A., Schulte, L. A., & Kolka, R. K. (2015). Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient. Geoderma, 255–256, 1–11. https://doi.org/10.1016/j.geoderma.2015.04.016
Qian, Z., Sun, X., Gao, J., & Zhuang, S. (2021). Effects of bamboo (Phyllostachys praecox) cultivation on soil nitrogen fractions and mineralization. Forests, 12(8), 1109. https://doi.org/10.3390/f12081109
Qin, H., Niu, L., Wu, Q., Chen, J., Li, Y., Liang, C., Xu, Q., Fuhrmann, J. J., & Shen, Y. (2017). Bamboo forest expansion increases soil organic carbon through its effect on soil arbuscular mycorrhizal fungal community and abundance. Plant and Soil, 420(1–2), 407–421. https://doi.org/10.1007/s11104-017-3415-6
Rahmadaniarti, A., & Mofu, W. Y. (2020). Chemical compounds and decomposition process from four species leaf litter as a source of organic matter soil in Anggori Education Forest, Manokwari. Journal of Sylva Indonesiana, 3(02), 60–67. https://doi.org/10.32734/jsi.v3i02.2848
Rahman, N. S. N. A., Hamid, N. W. A., & Nadarajah, K. (2021). Effects of abiotic stress on soil microbiome. International Journal of Molecular Sciences, 22(16), 9036. https://doi.org/10.3390/ijms22169036
Saputri, D. A., Kamelia, M., Widiani, N., & Hermawan, A. (2021). Effect of bamboo (Dendrocalamus asper Back.) shoot liquid organic fertilizer on growth of pre-anthesis cayenne pepper (Capsicum frutescens L.) by hydroponics. Jurnal Biota, 7(1), 17–24. https://doi.org/10.19109/biota.v7i1.5436
Schmid, I., & Kazda, M. (2002). Root distribution of Norway spruce in monospecific and mixed stands on different soils. Forest Ecology and Management, 159(1–2), 37–47. https://doi.org/10.1016/S0378-1127(01)00708-3
Semenov, V. M., Lebedeva, T. N., & Pautova, N. B. (2019). Particulate organic matter in noncultivated and arable soils. Eurasian Soil Science, 52(4), 396–404. https://doi.org/10.1134/S1064229319040136
Shapkota, J., & Kafle, G. (2021). Variation in soil organic carbon under different forest types in Shivapuri Nagarjun National Park, Nepal. Scientifica, 2021, 1382687. https://doi.org/10.1155/2021/1382687
Shi, J., Mao, S., Wang, L., Ye, X., Wu, J., Wang, G., Chen, F., & Yang, Q. (2021). Clonal integration driven by source-sink relationships is constrained by rhizome branching architecture in a running bamboo species (Phyllostachys glauca): A 15N assessment in the field. Forest Ecology and Management, 481, 118754. https://doi.org/10.1016/j.foreco.2020.118754
Sible, C. N., Seebauer, J. R., & Below, F. E. (2021). Plant biostimulants: A categorical review, their implications for row crop production, and relation to soil health indicators. Agronomy, 11(7), 1297. https://doi.org/10.3390/agronomy11071297
Sijabat, L. M. T., Nurudin, M., Notohadisuwarno, S., & Utami, S. N. H. (2018). Labile carbon fraction, humic acid, and fulvic acid on organic and conventional farming of rice field in Imogiri and Berbah. IOP Conference Series: Earth and Environmental Science, 215(1), 012005. https://doi.org/10.1088/1755-1315/215/1/012005
Sofiah, S., Setiadi, D., & Widyatmoko, D. (2018). The influence of edaphic factors on bamboo population in Mount Baung Natural Tourist Park, Pasuruan, East Java, Indonesia. Tropical Drylands, 2(1), 12–17. https://doi.org/10.13057/tropdrylands/t020103
Sohel, M. S. I., Alamgir, M., Akhter, S., & Rahman, M. (2015). Carbon storage in a bamboo (Bambusa vulgaris) plantation in the degraded tropical forests: Implications for policy development. Land Use Policy, 49, 142–151. https://doi.org/10.1016/j.landusepol.2015.07.011
Song, X., Zhou, G., Jiang, H., Yu, S., Fu, J., Li, W., Wang, W., Ma, Z., & Peng, C. (2011). Carbon sequestration by Chinese bamboo forests and their ecological benefits: Assessment of potential, problems, and future challenges. Environmental Reviews, 19(1), 418–428. https://doi.org/10.1139/a11-015
Sootahar, M. K., Zeng, X., Su, S., Wang, Y., Bai, L., Zhang, Y., Li, T., & Zhang, X. (2019). The effect of fulvic acids derived from different materials on changing properties of albic black soil in the Northeast Plain of China. Molecules, 24(8), 1535. https://doi.org/10.3390/molecules24081535
Sujarwo, W. (2016). Stand biomass and carbon storage of bamboo forest in Penglipuran traditional village, Bali (Indonesia). Journal of Forestry Research, 27(4), 913–917. https://doi.org/10.1007/s11676-016-0227-0
Syamsiyah, J., Sunarminto, B. H., Hanudin, E., Widada, J., & Mujiyo. (2019). Carbon dioxide emission and carbon sequestration potential in Alfisol. Bulgarian Journal of Agricultural Science, 25(1), 42–48. Retrieved from https://www.agrojournal.org/25/01-06.pdf
Voroney, R. P., Brookes, C. P., & Beyaert, R. P. (2007). Soil microbial biomass C, N, P, and S. Soil Sampling and Methods of Analysis: Second Edition (pp. 293–306). Florida, USA: CRC Press. https://doi.org/10.1201/9781420005271-33
Wang, C., Alidoust, D., Yang, X., & Isoda, A. (2018). Effects of bamboo biochar on soybean root nodulation in multi-elements contaminated soils. Ecotoxicology and Environmental Safety, 150, 62–69. https://doi.org/10.1016/j.ecoenv.2017.12.036
Wang, H., Boutton, T. W., Xu, W., Hu, G., Jiang, P., & Bai, E. (2015). Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes. Scientific Reports, 5(1), 1–13. https://doi.org/10.1038/srep10102
Wang, J., & Sainju, U. M. (2014). Soil carbon and nitrogen fractions and crop yields affected by residue placement and crop types. PLoS ONE, 9(8), e0105039. https://doi.org/10.1371/journal.pone.0105039
Wang, Y., Shao, M., Zhang, C., Liu, Z., Zou, J., & Xiao, J. (2015). Soil organic carbon in deep profiles under Chinese continental monsoon climate and its relations with land uses. Ecological Engineering, 82, 361–367. https://doi.org/10.1016/j.ecoleng.2015.05.004
Wei, X., Yang, Y., Shen, Y., Chen, Z., Dong, Y., Wu, F., & Zhang, L. (2020). Effects of litterfall on the accumulation of extracted soil humic substances in subalpine forests. Frontiers in Plant Science, 11, 467834. https://doi.org/10.3389/fpls.2020.00254
Wijanarko, A., & Purwanto, B. H. (2017). Effect of land use and organic matter on nitrogen and carbon labile fractions in a Typic Hapludult. Journal of Degraded and Mining Lands Management, 04(03), 837–843. https://doi.org/10.15243/jdmlm.2017.043.837
Wong, M. T. F., & Swift, R. S. (2001). Application of fresh and humified organic matter to ameliorate soil acidity. Proceedings of the 9th International Conference of the International Humic Substance Society, 235–242. Retrieved from https://espace.library.uq.edu.au/view/UQ:96857
Wu, W., Chen, G., Meng, T., Li, C., Feng, H., Si, B., & Siddique, K. H. M. (2023). Effect of different vegetation restoration on soil properties in the semi-arid Loess Plateau of China. Catena, 220, 106630. https://doi.org/10.1016/j.catena.2022.106630
Xiao, L., Li, C., Cai, Y., Zhou, T., Zhou, M., Gao, X., Shi, Y., Du, H., Zhou, G., & Zhou, Y. (2021). Interactions between soil properties and the rhizome-root distribution in a 12-year Moso bamboo reforested region: Combining ground-penetrating radar and soil coring in the field. Science of the Total Environment, 800, 149467. https://doi.org/10.1016/j.scitotenv.2021.149467
Xing, T., Cai, A., Lu, C., Ye, H., Wu, H., Huai, S., Wang, J., Xu, M., & Lin, Q. (2022). Increasing soil microbial biomass nitrogen in crop rotation systems by improving nitrogen resources under nitrogen application. Journal of Integrative Agriculture, 21(5), 1488–1500. https://doi.org/10.1016/S2095-3119(21)63673-0
Yang, C. H., Chai, Q., & Huang, G. B. (2010). Root distribution and yield responses of wheat/maize intercropping to alternate irrigation in the arid areas of northwest China. Plant, Soil and Environment, 56(6), 253–262. https://doi.org/10.17221/251/2009-pse
Yang, L., Liu, W., Jia, Z., Li, P., Wu, Y., Chen, Y., Liu, C., Chang, P., & Liu, L. (2022). Land-use change reduces soil nitrogen retention of both particulate and mineral-associated organic matter in a temperate grassland. Catena, 216, 106432. https://doi.org/10.1016/j.catena.2022.106432
Yiping, L., Yanxia, L., Buckingham, K., Henley, G., & Guomo, Z. (2010). Bamboo and climate change mitigation: A comparative analysis of carbon sequestration. Technical Report No. 32. China: International Network for Bamboo and Rattan. Retrieved from https://forestindustries.eu/sites/default/files/userfiles/1file/bamboo-TR32.pdf
Zachariah, E. J., Sabulal, B., Nair, D. N. K., Johnson, A. J., & Kumar, C. S. P. (2016). Carbon dioxide emission from bamboo culms. Plant Biology, 18(3), 400–405. https://doi.org/10.1111/plb.12435
Zhang, L., Chen, X., Xu, Y., Jin, M., Ye, X., Gao, H., Chu, W., Mao, J., & Thompson, M. L. (2020). Soil labile organic carbon fractions and soil enzyme activities after 10 years of continuous fertilization and wheat residue incorporation. Scientific Reports, 10, 11318. https://doi.org/10.1038/s41598-020-68163-3
Zhou, D., Zhao, S. Q., Liu, S., & Oeding, J. (2013). A meta-analysis on the impacts of partial cutting on forest structure and carbon storage. Biogeosciences, 10(6), 3691–3703. https://doi.org/10.5194/bg-10-3691-2013
Refbacks
- There are currently no refbacks.