Assessing N2O Emissions from Tropical Crop Cultivation in Mineral and Peatland Soils: A Review

Suwardi Suwardi, Darmawan Darmawan, Gunawan Djajakirana, Basuki Sumawinata, Nourma Al Viandari

Abstract

Nitrous oxide (N2O) emissions from agricultural activities contribute significantly to global warming. Understanding the factors influencing N2O emissions is crucial for developing effective mitigation strategies. This review assesses N2O emissions from various crops cultivated in tropical mineral and peatland soils, providing insights into the impact of land use, fertilization practices and rainfall on N2O fluxes. Field measurements of N2O fluxes were conducted in agricultural fields growing corn, peanuts, and cassava in Bogor Regency, West Java Province, as well as in peatland areas with Acacia plantations and natural primary forests in Bengkalis Regency, Riau Province. The study assesses the total N2O fluxes for each crop and land type, revealing significant variations in N2O emissions among different crops and land uses. Peatland areas exhibit higher emissions compared to mineral soils, emphasizing the need for targeted mitigation measures in these ecosystems. The findings highlight the importance of considering the type and age of land use when evaluating N2O emissions. Land management practices, such as fertilizer use and soil disturbance, emerge as critical factors affecting N2O emissions. Improper fertilizer application and excessive soil disturbance can lead to increased N2O emissions, underscoring the necessity for careful N fertilizer management and conservation tillage techniques.

Keywords

agricultural land; closed chamber method; N2O gas emission; peatland soil; tropical mineral soil

Full Text:

PDF

References

Abatenh, E., Gizaw, B., Tsegaye, Z., & Tefera, G. (2018). Microbial function on climate change—A review. Environment Pollution and Climate Change, 2(1), 147. https://doi.org/10.4172/2573-458x.1000147

Addington, O., Zeng, Z. C., Pongetti, T., Shia, R. L., Gurney, K. R., Liang, J., Roest, G., He, L., Yung, Y. L., & Sander, S. P. (2021). Estimating nitrous oxide (N2O) emissions for the Los Angeles Megacity using mountaintop remote sensing observations. Remote Sensing of Environment, 259, 112351. https://doi.org/10.1016/j.rse.2021.112351

Ahmad, A. (2021). Soil fertility mapping of corn plant based on minerals in Jeneponto Regency. Jurnal Ecosolum, 10(2), 1–14. Retrieved from http://journal.unhas.ac.id/index.php/ecosolum/article/view/18682

Alam, M. K., Bell, R. W., Haque, M. E., Islam, M. A., & Kader, M. A. (2020). Soil nitrogen storage and availability to crops are increased by conservation agriculture practices in rice–based cropping systems in the Eastern Gangetic Plains. Field Crops Research, 250, 107764. https://doi.org/10.1016/j.fcr.2020.107764

Arai, H., Hadi, A., Darung, U., Limin, S. H., Takahashi, H., Hatano, R., & Inubushi, K. (2014). Land use change affects microbial biomass and fluxes of carbon dioxide and nitrous oxide in tropical peatlands. Soil Science and Plant Nutrition, 60(3), 423–434. https://doi.org/10.1080/00380768.2014.903576

Ashiq, W., Vasava, H., Cheema, M., Dunfield, K., Daggupati, P., & Biswas, A. (2021). Interactive role of topography and best management practices on N2O emissions from agricultural landscape. Soil and Tillage Research, 212, 105063. https://doi.org/10.1016/j.still.2021.105063

Baruah, K. K., Gogoi, B., Gogoi, P., & Gupta, P. K. (2010). N2O emission in relation to plant and soil properties and yield of rice varieties. Agronomy for Sustainable Development, 30(4), 733–742. https://doi.org/10.1051/agro/2010021

Bijay-Singh, & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Applied Sciences, 3(4), 518. https://doi.org/10.1007/s42452-021-04521-8

Bronson, K. F., Hunsaker, D. J., El-Shikha, D. M., Rockholt, S. M., Williams, C. F., Rasutis, D., Soratana, K., & Venterea, R. T. (2021). Nitrous oxide emissions, N uptake, biomass, and rubber yield in N-fertilized, surface-irrigated guayule. Industrial Crops and Products, 167, 113561. https://doi.org/10.1016/j.indcrop.2021.113561

Buschmann, C., Röder, N., Berglund, K., Berglund, Ö., Lærke, P. E., Maddison, M., Mander, Ü., Myllys, M., Osterburg, B., & van den Akker, J. J. H. (2020). Perspectives on agriculturally used drained peat soils: Comparison of the socioeconomic and ecological business environments of six European regions. Land Use Policy, 90, 104181. https://doi.org/10.1016/j.landusepol.2019.104181

Busman, N. A., Melling, L., Goh, K. J., Imran, Y., Sangok, F. E., & Watanabe, A. (2023). Soil CO2 and CH4 fluxes from different forest types in tropical peat swamp forest. Science of the Total Environment, 858, 159973. https://doi.org/10.1016/j.scitotenv.2022.159973

Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20130122. https://doi.org/10.1098/rstb.2013.0122

Chantigny, M., Rochette, P., Angers, D., Massé, D., & Côté, D. (2004). Ammonia volatilization and selected soil characteristics following application of anaerobically digested pig slurry. Soil Science Society of America Journal, 68(1), 306–312. https://doi.org/10.2136/sssaj2004.3060

Chen, H., Zhou, J., Li, B., & Xiong, Z. (2019). Yield-scaled N2O emissions as affected by nitrification inhibitor and overdose fertilization under an intensively managed vegetable field: A three-year field study. Atmospheric Environment, 206, 247–257. https://doi.org/10.1016/j.atmosenv.2019.02.036

Costa, C., Wironen, M., Racette, K., & Wollenberg, E. (2021). Global Warming Potential* (GWP*): Understanding the implications for mitigating methane emissions in agriculture. Wageningen, The Netherlands: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Retrieved from https://hdl.handle.net/10568/114632

Crézé, C. M., & Madramootoo, C. A. (2019). Water table management and fertilizer application impacts on CO2, N2O and CH4 fluxes in a corn agro-ecosystem. Scientific Reports, 9, 2692. https://doi.org/10.1038/s41598-019-39046-z

Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V., & Veldkamp, E. (2000). Testing a conceptual model of soil emissions of nitrous and nitric oxides: Using two functions based on soil nitrogen availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the observed variation of nitric oxide and nitrous oxide emissions from soils. BioScience, 50(8), 667–680. https://doi.org/10.1641/0006-3568(2000)050[0667:TACMOS]2.0.CO;2

Delgado, J. A., & Follett, R. F. (2002). Carbon and nutrient cycles. Journal of Soil and Water Conservation, 57(6), 455–464. Retrieved from https://www.jswconline.org/content/57/6/455.short

Deng, Q., Hui, D., Wang, J., Iwuozo, S., Yu, C.-L., Jima, T., Smart, D., Reddy, C., & Dennis, S. (2015). Corn yield and soil nitrous oxide emission under different fertilizer and soil management: A three-year field experiment in middle Tennessee. PLoS ONE, 10(4), e0125406. https://doi.org/10.1371/journal.pone.0125406

Dhandapani, S., Evers, S., Boyd, D., Evans, C. D., Page, S., Parish, F., & Sjogersten, S. (2023). Assessment of differences in peat physico-chemical properties, surface subsidence and GHG emissions between the major land-uses of Selangor peatlands. CATENA, 230, 107255. https://doi.org/10.1016/j.catena.2023.107255

Friedl, J., Cardenas, L. M., Clough, T. J., Dannenmann, M., Hu, C., & Scheer, C. (2020). Measuring denitrification and the N2O:(N2O + N2) emission ratio from terrestrial soils. Current Opinion in Environmental Sustainability, 47, 61–71. https://doi.org/10.1016/j.cosust.2020.08.006

Fukao, T., Barrera-Figueroa, B. E., Juntawong, P., & Peña-Castro, J. M. (2019). Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects. Frontiers in Plant Science, 10, 340. https://doi.org/10.3389/fpls.2019.00340

Geng, S., Chen, Z., Han, S., Wang, F., & Zhang, J. (2017). Rainfall reduction amplifies the stimulatory effect of nitrogen addition on N2O emissions from a temperate forest soil. Scientific Reports, 7, 43329. https://doi.org/10.1038/srep433290

Ghaly, A., & Ramakrisnan, V. (2015). Nitrogen sources and cycling in the ecosystem and its role in air, water and soil pollution: A critical review. Journal of Pollution Effects & Control, 3(2), 136. https://doi.org/10.4172/2375-4397.1000136

Giles, M., Morley, N., Baggs, E. M., & Daniell, T. J. (2012). Soil nitrate reducing processes—Drivers, mechanisms for spatial variation, and significance for nitrous oxide production. Frontiers in Microbiology, 3, 30024. https://doi.org/10.3389/fmicb.2012.00407

Grassmann, C. S., Mariano, E., Rocha, K. F., Gilli, B. R., & Rosolem, C. A. (2020). Effect of tropical grass and nitrogen fertilization on nitrous oxide, methane, and ammonia emissions of maize-based rotation systems. Atmospheric Environment, 234, 117571. https://doi.org/10.1016/j.atmosenv.2020.117571

Gregorich, E. G., Rochette, P., St-Georges, P., McKim, U. F., & Chan, C. (2008). Tillage effects on N2O emission from soils under corn and soybeans in Eastern Canada. Canadian Journal of Soil Science, 88(2), 153–161. https://doi.org/10.4141/CJSS06041

Grohskopf, M. A., Corrêa, J. C., Fernandes, D. M., Teixeira, P. C., Cruz, C. V., & Mota, S. C. A. (2019). Interaction between phosphorus and nitrogen in organomineral fertilizer. Communications in Soil Science and Plant Analysis, 50(21), 2742–2755. https://doi.org/10.1080/00103624.2019.1678632

Guenet, B., Gabrielle, B., Chenu, C., Arrouays, D., Balesdent, J., Bernoux, M., Bruni, E., Caliman, J. P., Cardinael, R., Chen, S., Ciais, P., Desbois, D., Fouche, J., Frank, S., Henault, C., Lugato, E., Naipal, V., Nesme, T., Obersteiner, M., … Zhou, F. (2021). Can N2O emissions offset the benefits from soil organic carbon storage? Global Change Biology, 27(2), 237–256. https://doi.org/10.1111/gcb.15342

Gunawan, H. (2018). Indonesian peatland functions: Initiated peatland restoration and responsible management of peatland for the benefit of local community, case study in Riau and West Kalimantan Provinces. Asia in Transition, 7, 117–138. https://doi.org/10.1007/978-981-10-8881-0_6

Harris, E., Yu, L., Wang, Y. P., Mohn, J., Henne, S., Bai, E., Barthel, M., Bauters, M., Boeckx, P., Dorich, C., Farrell, M., Krummel, P. B., Loh, Z. M., Reichstein, M., Six, J., Steinbacher, M., Wells, N. S., Bahn, M., & Rayner, P. (2022). Warming and redistribution of nitrogen inputs drive an increase in terrestrial nitrous oxide emission factor. Nature Communications, 13(1), 4310. https://doi.org/10.1038/s41467-022-32001-z

Hassan, M. U., Aamer, M., Mahmood, A., Awan, M. I., Barbanti, L., Seleiman, M. F., Bakhsh, G., Alkharabsheh, H. M., Babur, E., Shao, J., Rasheed, A., & Huang, G. (2022). Management strategies to mitigate N2O emissions in agriculture. Life, 12(3), 439. https://doi.org/10.3390/life12030439

Hendri, J., Sumawinata, B., & Baskoro, D. P. T. (2015). CO2 flux from tropical land uses on andisol in West Java, Indonesia. Journal of Tropical Soils, 19(3), 121–130. https://doi.org/10.5400/jts.2014.v19i3.121-130

Hodnebrog, Ø., Myhre, G., Kramer, R. J., Shine, K. P., Andrews, T., Faluvegi, G., Kasoar, M., Kirkevåg, A., Lamarque, J. F., Mülmenstädt, J., Olivié, D., Samset, B. H., Shindell, D., Smith, C. J., Takemura, T., & Voulgarakis, A. (2020). The effect of rapid adjustments to halocarbons and N2O on radiative forcing. Npj Climate and Atmospheric Science, 3, 43. https://doi.org/10.1038/s41612-020-00150-x

Holder, A. J., McCalmont, J. P., Rowe, R., McNamara, N. P., Elias, D., & Donnison, I. S. (2019). Soil N2O emissions with different reduced tillage methods during the establishment of Miscanthus in temperate grassland. GCB Bioenergy, 11(3), 539–549. https://doi.org/10.1111/gcbb.12570

Hsiao, C. M. (2022). Economic growth, CO2 emissions quota and optimal allocation under uncertainty. Sustainability, 14(14), 8706. https://doi.org/10.3390/su14148706

Hu, W., Jiang, Y., Chen, D., Lin, Y., Han, Q., & Cui, Y. (2018). Impact of pore geometry and water saturation on gas effective diffusion coefficient in soil. Applied Sciences, 8(11), 2097. https://doi.org/10.3390/app8112097

Huang, D., Chen, X., Zhang, S., Zhang, Y., Gao, Y., Zhang, Y., & Liang, A. (2022). No-tillage improvement of nitrogen absorption and utilization in a Chinese mollisol using 15N-Tracing Method. Atmosphere, 13(4), 530. https://doi.org/10.3390/atmos13040530

IPCC. (2022a). Climate change 2022: Impacts, adaptation and vulnerability. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781009157926

IPCC. (2022b). Summary for Policymakers. In P. R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, & J. Malley (Eds.), Climate Change 2022 - Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3–48). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781009157926

IPCC. (2023). Summary for Policymakers. In Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3–32). Cambridge: Cambridge University Press. https://dx.doi.org/10.1017/9781009157896.001

Ishizuka, S., Ohta, S., Mori, T., Konda, R., Gobara, Y., Hamotani, Y., Kawabata, C., Wicaksono, A., Heriyanto, J., & Hardjono, A. (2021). N2O emissions in Acacia mangium stands with different ages, in Sumatra, Indonesia. Forest Ecology and Management, 498, 119539. https://doi.org/10.1016/j.foreco.2021.119539

Ito, A., Nishina, K., Ishijima, K., Hashimoto, S., & Inatomi, M. (2018). Emissions of nitrous oxide (N2O) from soil surfaces and their historical changes in East Asia: A model-based assessment. Progress in Earth and Planetary Science, 5, 55. https://doi.org/10.1186/s40645-018-0215-4

Janke, C., Moody, P., Fujinuma, R., & Bell, M. (2022). The impact of banding polymer-coated urea on nitrogen availability and distribution in contrasting soils. Journal of Soil Science and Plant Nutrition, 22, 3081–3095. https://doi.org/10.1007/s42729-022-00869-x

Jurado, A., Borges, A. V., & Brouyère, S. (2017). Dynamics and emissions of N2O in groundwater: A review. Science of the Total Environment, 584–585, 207–218. https://doi.org/10.1016/j.scitotenv.2017.01.127

Kim, K., Gil, J., Ostrom, N. E., Gandhi, H., Oerther, M. S., Kuzyakov, Y., Guber, A. K., & Kravchenko, A. N. (2022). Soil pore architecture and rhizosphere legacy define N2O production in root detritusphere. Soil Biology and Biochemistry, 166, 108565. https://doi.org/10.1016/j.soilbio.2022.108565

Krauss, M., Ruser, R., Müller, T., Hansen, S., Mäder, P., & Gattinger, A. (2017). Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley—Winter wheat cropping sequence. Agriculture, Ecosystems and Environment, 239, 324–333. https://doi.org/10.1016/j.agee.2017.01.029

Kweku, D., Bismark, O., Maxwell, A., Desmond, K., Danso, K., Oti-Mensah, E., Quachie, A., & Adormaa, B. (2018). Greenhouse effect: Greenhouse gases and their impact on global warming. Journal of Scientific Research and Reports, 17(6), 1–9. https://doi.org/10.9734/jsrr/2017/39630

Lam, S. K., Suter, H., Mosier, A. R., & Chen, D. (2017). Using nitrification inhibitors to mitigate agricultural N2O emission: A double-edged sword? Global Change Biology, 23(2), 485–489. https://doi.org/10.1111/gcb.13338

Lawrence, N. C., Tenesaca, C. G., VanLoocke, A., & Hall, S. J. (2021). Nitrous oxide emissions from agricultural soils challenge climate sustainability in the US Corn Belt. Proceedings of the National Academy of Sciences of the United States of America, 118(46), e2112108118. https://doi.org/10.1073/pnas.2112108118

Linn, D. M., & Doran, J. W. (1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 48(6), 1267–1272. https://doi.org/10.2136/sssaj1984.03615995004800060013x

Lu, X., Taylor, A. E., Myrold, D. D., & Neufeld, J. D. (2020). Expanding perspectives of soil nitrification to include ammonia-oxidizing archaea and comammox bacteria. Soil Science Society of America Journal, 84(2), 287–302. https://doi.org/10.1002/saj2.20029

Lv, L., Gao, Z., Liao, K., Zhu, Q., & Zhu, J. (2023). Impact of conservation tillage on the distribution of soil nutrients with depth. Soil and Tillage Research, 225, 105527. https://doi.org/10.1016/j.still.2022.105527

Ma, Y., Schwenke, G., Sun, L., Liu, D. L., Wang, B., & Yang, B. (2018). Modeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenarios. Science of The Total Environment, 630, 1544–1552. https://doi.org/10.1016/j.scitotenv.2018.02.322

Macdonald, L., Farrell, M., & Baldock, J. (2016). The influence of increasing organic matter content on N2O emissions. Proceedings of the 2016 International Nitrogen Initiative Conference, “Solutions to Improve Nitrogen Use Efficiency for the World,” pp. 1–5. Retrieved from https://www.researchgate.net/publication/312044643_The_influence_of_increasing_organic_matter_content_on_N2O_emissions

Martínez-Espinosa, R. M., Hatano, R., Wu, Y., & Shaaban, M. (2023). Editorial: Nitrogen dynamics and load in soils. Frontiers in Environmental Science, 11, 1197902. https://doi.org/10.3389/fenvs.2023.1197902

Menegat, S., Ledo, A., & Tirado, R. (2022). Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Scientific Reports, 12, 14490. https://doi.org/10.1038/s41598-022-18773-w

Ministry of Environment and Forestry of Indonesia’s. (2022). Laporan inventarisasi gas rumah kaca (GRK) dan monitoring, pelaporan, verifikasi (MPV) tahun 2021. Retrieved from https://signsmart.menlhk.go.id/v2.1/app/frontend/pedoman/detail/44

Mondal, S., & Chakraborty, D. (2022). Soil nitrogen status can be improved through no-tillage adoption particularly in the surface soil layer: A global meta-analysis. Journal of Cleaner Production, 366, 132874. https://doi.org/10.1016/j.jclepro.2022.132874

Mori, T., Ohta, S., Ishizuka, S., Konda, R., Wicaksono, A., Heriyanto, J., & Hardjono, A. (2010). Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. Soil Science and Plant Nutrition, 56(5), 782–788. https://doi.org/10.1111/j.1747-0765.2010.00501.x

Mori, T., Wachrinrat, C., Staporn, D., Meunpong, P., Suebsai, W., Matsubara, K., Boonsri, K., Lumban, W., Kuawong, M., Phukdee, T., Srifai, J., & Boonman, K. (2017). Effects of phosphorus addition on nitrogen cycle and fluxes of N2O and CH4 in tropical tree plantation soils in Thailand. Agriculture and Natural Resources, 51(2), 91–95. https://doi.org/10.1016/j.anres.2016.03.002

Netherway, T., Bengtsson, J., Krab, E. J., & Bahram, M. (2021). Biotic interactions with mycorrhizal systems as extended nutrient acquisition strategies shaping forest soil communities and functions. Basic and Applied Ecology, 50, 25–42. https://doi.org/10.1016/j.baae.2020.10.002

Nugroho, P. A., Sudadi, U., & Suwardi, S. (2018). Effect of fertilizer management on soil carbon dioxide fluxes in grassland and cornfield during winter. Journal of Agricultural Science and Technology, 20(4), 841–853. Retrieved from http://jast.modares.ac.ir/article-23-19906-en.html

Prananto, J. A., Minasny, B., Comeau, L. P., Rudiyanto, R., & Grace, P. (2020). Drainage increases CO2 and N2O emissions from tropical peat soils. Global Change Biology, 26(8), 4583–4600. https://doi.org/10.1111/gcb.15147

Prather, M. J., Hsu, J., DeLuca, N. M., Jackman, C. H., Oman, L. D., Douglass, A. R., Fleming, E. L., Strahan, S. E., Steenrod, S. D., Søvde, O. A., Isaksen, I. S. A., Froidevaux, L., & Funke, B. (2015). Measuring and modeling the lifetime of nitrous oxide including its variability. Journal of Geophysical Research. Atmospheres, 120(11), 5693–5705. https://doi.org/10.1002/2015JD023267

Qu, W., Suo, L., Liu, R., Liu, M., Zhao, Y., Xia, L., Fan, Y., Zhang, Q., & Gao, Z. (2022). Influence of temperature on denitrification and microbial community structure and diversity: A laboratory study on nitrate removal from groundwater. Water, 14(3), 436. https://doi.org/10.3390/w14030436

Rajta, A., Bhatia, R., Setia, H., & Pathania, P. (2020). Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. Journal of Applied Microbiology, 128(5), 1261–1278. https://doi.org/10.1111/jam.14476

Ramzan, S., Rasool, T., Bhat, R., Ahmed, P., Ashraf, I., Rashid, N., Shafiq, M., & Ikhlaq, M. (2020). Agricultural soils a trigger to nitrous oxide: A persuasive greenhouse gas and its management. Environmental Monitoring and Assessment, 192, 436. https://doi.org/10.1007/s10661-020-08410-2

Rapson, T. D., & Dacres, H. (2014). Analytical techniques for measuring nitrous oxide. TrAC Trends in Analytical Chemistry, 54, 65–74. https://doi.org/10.1016/j.trac.2013.11.004

Rehman, S. ur, Ijaz, S. S., Raza, M. A., Mohi Ud Din, A., Khan, K. S., Fatima, S., Raza, T., Mehmood, S., Saeed, A., & Ansar, M. (2023). Soil organic carbon sequestration and modeling under conservation tillage and cropping systems in a rainfed agriculture. European Journal of Agronomy, 147, 126840. https://doi.org/10.1016/j.eja.2023.126840

Richards, M. B., Butterbach-bahl, K., Jat, M. L., Lipinski, B., Ortiz-Monasterio, I., & Sapkota, T. (2016). Site-specific nutrient management: Implementation guidance for policymakers and investors. Climate-Smart Agriculture Practice Brief. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Retrieved from https://cgspace.cgiar.org/handle/10568/69016

Ritchie, H., Roser, M., & Rosado, P. (2020). CO₂ and Greenhouse Gas Emissions. Our World in Data. Retrieved from https://ourworldindata.org/greenhouse-gas-emissions

Romero, C. M., Hao, X., Li, C., Owens, J., Schwinghamer, T., McAllister, T. A., & Okine, E. (2021). Nutrient retention, availability and greenhouse gas emissions from biochar-fertilized Chernozems. Catena, 198, 105046. https://doi.org/10.1016/j.catena.2020.105046

Roy, A. K., Wagner-Riddle, C., Deen, B., Lauzon, J., & Bruulsema, T. (2014). Nitrogen application rate, timing and history effects on nitrous oxide emissions from corn (Zea mays L.). Canadian Journal of Soil Science, 94(4), 563–573. https://doi.org/10.4141/CJSS2013-118

Ruiz, M. S. M., Reiser, M., & Kranert, M. (2021). Nitrous oxide emission fluxes in coffee plantations during fertilization: A case study in Costa Rica. Atmosphere, 12(12), 1656. https://doi.org/10.3390/atmos12121656

Rychel, K., Meurer, K. H. E., Börjesson, G., Strömgren, M., Getahun, G. T., Kirchmann, H., & Kätterer, T. (2020). Deep N fertilizer placement mitigated N2O emissions in a Swedish field trial with cereals. Nutrient Cycling in Agroecosystems, 118(2), 133–148. https://doi.org/10.1007/s10705-020-10089-3

Salazar, O., Diaz, R., Nario, A., Videla, X., Alonso-Ayuso, M., & Quemada, M. (2021). Nitrogen fertilizer efficiency determined by the 15N dilution technique in maize followed or not by a cover crop in Mediterranean Chile. Agriculture, 11(8), 721. https://doi.org/10.3390/agriculture11080721

Santos, W. de M., Alves, B. J. R., Urquiaga, S., Pacheco, E. P., Barros, I. de, Fernandes, M. F., Batista, J. N., Bender, E. P., Souza, H. N. de, & Jantalia, C. P. (2020). Ammonia volatilization and yield of corn fertilized with different nitrogen sources in the Brazilian semiarid. Pesquisa Agropecuária Brasileira, 55, e01036. https://doi.org/10.1590/S1678-3921.pab2020.v55.01036

Sarkar, M. I. U., Islam, M. N., Jahan, A., Islam, A., & Biswas, J. C. (2017). Rice straw as a source of potassium for wetland rice cultivation. Geology, Ecology, and Landscapes, 1(3), 184–189. https://doi.org/10.1080/24749508.2017.1361145

Senbayram, M., Budai, A., Bol, R., Chadwick, D., Marton, L., Gündogan, R., & Wu, D. (2019). Soil NO3− level and O2 availability are key factors in controlling N2O reduction to N2 following long-term liming of an acidic sandy soil. Soil Biology and Biochemistry, 132(3), 165–173. https://doi.org/10.1016/j.soilbio.2019.02.009

Shaaban, M., Wu, Y., Khalid, M. S., Peng, Q. an, Xu, X., Wu, L., Younas, A., Bashir, S., Mo, Y., Lin, S., Zafar-ul-Hye, M., Abid, M., & Hu, R. (2018). Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes. Environmental Pollution, 235, 625–631. https://doi.org/10.1016/j.envpol.2017.12.066

Shcherbak, I., & Robertson, G. P. (2019). Nitrous oxide (N2O) emissions from subsurface soils of agricultural ecosystems. Ecosystems, 22(7), 1650–1663. https://doi.org/10.1007/s10021-019-00363-z

Soares, J. R., Souza, B. R., Mazzetto, A. M., Galdos, M. V., Chadwick, D. R., Campbell, E. E., Jaiswal, D., Oliveira, J. C., Monteiro, L. A., Vianna, M. S., Lamparelli, R. A. C., Figueiredo, G. K. D. A., Sheehan, J. J., & Lynd, L. R. (2023). Mitigation of nitrous oxide emissions in grazing systems through nitrification inhibitors: A meta-analysis. Nutrient Cycling in Agroecosystems, 125(3), 359–377. https://doi.org/10.1007/s10705-022-10256-8

Solecki, W., Singh, C., Ley, D., & Revi, A. (2022). Climate Change 2022. Impacts, Vulnerability and Adaptation. Summary for Policymakers (Issue IPCC WGII Sixth Assessment Report). Retrieved from https://www.ipcc.ch/report/ar6/wg2/chapter/summary-for-policymakers/

Sosulski, T., Niedziński, T., Jadczyszyn, T., & Szymańska, M. (2022). Influence of reduced tillage, fertilizer placement, and soil afforestation on CO2 Emission from arable sandy soils. Agronomy, 12(12), 3102. https://doi.org/10.3390/agronomy12123102

Stanton, C. L., Reinhard, C. T., Kasting, J. F., Ostrom, N. E., Haslun, J. A., Lyons, T. W., & Glass, J. B. (2018). Nitrous oxide from chemodenitrification: A possible missing link in the proterozoic greenhouse and the evolution of aerobic respiration. Geobiology, 16(6), 597–609. https://doi.org/10.1111/gbi.12311

Sumawinata, B., Djajakirana, G., Suwardi, & Darmawan. (2014). Carbon dynamics in tropical peatland planted forests (One-year research findings in Sumatra, Indonesia) (First edition). Bogor: IPB Press. Retrieved from https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Carbon+Dynamics+In+Tropical+Peatland+Planted+Forests&btnG=

Uda, S. K., Hein, L., & Adventa, A. (2020). Towards better use of Indonesian peatlands with paludiculture and low-drainage food crops. Wetlands Ecology and Management, 28(3), 509–526. https://doi.org/10.1007/s11273-020-09728-x

Venterea, R. T., Clough, T. J., Coulter, J. A., Breuillin-Sessoms, F., Wang, P., & Sadowsky, M. J. (2015). Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production. Scientific Reports, 5(1), 12153. https://doi.org/10.1038/srep12153

Wang, C., Amon, B., Schulz, K., & Mehdi, B. (2021). Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: A review. Agronomy, 11(4), 770. https://doi.org/10.3390/agronomy11040770

Wang, F., Li, J., Wang, X., Zhang, W., Zou, B., Neher, D. A., & Li, Z. (2014). Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China. Scientific Reports, 4, 5615. https://doi.org/10.1038/srep05615

Wang, X., Bai, J., Xie, T., Wang, W., Zhang, G., Yin, S., & Wang, D. (2021). Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A review. Ecotoxicology and Environmental Safety, 220, 112338. https://doi.org/10.1016/j.ecoenv.2021.112338

Weymann, D., Well, R., von der Heide, C., Böttcher, J., Flessa, H., & Duijnisveld, W. H. M. (2009). Recovery of groundwater N2O at the soil surface and its contribution to total N2O emissions. Nutrient Cycling in Agroecosystems, 85(3), 299–312. https://doi.org/10.1007/s10705-009-9269-4

Winkhart, F., Mösl, T., Schmid, H., & Hülsbergen, K. J. (2022). Effects of organic maize cropping systems on nitrogen balances and nitrous oxide emissions. Agriculture, 12(7), 907. https://doi.org/10.3390/agriculture12070907

Wrage-Mönnig, N., Horn, M. A., Well, R., Müller, C., Velthof, G., & Oenema, O. (2018). The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biology and Biochemistry, 123, A3–A16. https://doi.org/10.1016/j.soilbio.2018.03.020

Wu, M., Li, J., Leu, A. O., Erler, D. V., Stark, T., Tyson, G. W., Yuan, Z., McIlroy, S. J., & Guo, J. (2022). Anaerobic oxidation of propane coupled to nitrate reduction by a lineage within the class Symbiobacteriia. Nature Communications, 13(1), 6115. https://doi.org/10.1038/s41467-022-33872-y

Xie, L., Li, L., Xie, J., Wang, J., Anwar, S., Du, C., & Zhou, Y. (2022). Substituting inorganic fertilizers with organic amendment reduced nitrous oxide emissions by affecting nitrifiers’ microbial community. Land, 11(10), 1702. https://doi.org/10.3390/land11101702

Yerli, C., Cakmakci, T., & Sahin, U. (2022). CO2 emissions and their changes with H2O emissions, soil moisture, and temperature during the wetting–drying process of the soil mixed with different biochar materials. Journal of Water and Climate Change, 13(12), 4273–4282. https://doi.org/10.2166/wcc.2022.293

Yoo, J., Woo, S. H., Park, K. Do, & Chung, K. Y. (2016). Effect of no-tillage and conventional tillage practices on the nitrous oxide (N2O) emissions in an upland soil: Soil N2O emission as affected by the fertilizer applications. Applied Biological Chemistry, 59(6), 787–797. https://doi.org/10.1007/s13765-016-0226-z

Zajac, O., & Zubrowska-Sudol, M. (2022). Nitrification kinetics, N2O emission, and energy use in intermittently aerated hybrid reactor under different organic loading rates. International Journal of Environmental Science and Technology, 1–14. https://doi.org/10.1007/s13762-022-04715-6

Zhang, W., Zhu, X., Luo, Y., Rafique, R., Chen, H., Huang, J., & Mo, J. (2014). Responses of nitrous oxide emissions to nitrogen and phosphorus additions in two tropical plantations with N-fixing vs. Non-N-fixing tree species. Biogeosciences, 11(18), 4941–4951. https://doi.org/10.5194/bg-11-4941-2014

Zhou, H., Shi, H.-B., Guo, J.-W., Zhang, W.-C., & Wang, W.-G. (2020). Effects of the combined application of organic and inorganic fertilizers on N2O emissions from saline soil. Environmental Science, 41(8), 3811–3821. https://doi.org/10.13227/j.hjkx.202002046

Zhu, Y., Butterbach-Bahl, K., Merbold, L., Leitner, S., & Pelster, D. E. (2021). Nitrous oxide emission factors for cattle dung and urine deposited onto tropical pastures: A review of field-based studies. Agriculture, Ecosystems & Environment, 322, 107637. https://doi.org/10.1016/j.agee.2021.107637

Refbacks

  • There are currently no refbacks.