Fruit Morphology and Nutritional Composition of Different Genome Groups of Six Bananas Cultivars from Bali Island

I Nyoman Rai, Ni Nyoman Ari Mayadewi, I Wayan Wiraatmaja, Ni Komang Alit Astiari


Bali is home to at least 43 banana cultivars, each serving a wide range of purposes. To support its future development, there is a need to obtain essential information on the morphological and nutritional characteristics of these bananas for domestic needs and the tourism market. Therefore, this study aimed to analyze the fruit morphology and nutritional composition of six local Balinese banana cultivars mainly consumed on Bali Island, namely Pisang Mas (AA), Buluh (AAA), Lumut (AAA), Susu (AAB), Raja (ABB) and Kepok (ABB) genomes. The observation of fruit morphology followed the guidelines of the International Plant Genetic Resources Institute method for bananas. The nutritional composition was analyzed using standard methods by measuring the proximate composition, vitamin C and concentrations of minerals K, Ca, Fe and P. Based on the morphological relationship coefficient values, it was discovered that all banana cultivars were closely related. Dessert bananas of Pisang Mas, Buluh, Lumut and Susu shared a close relationship with their ancestor Musa acuminata, which contributed to the ‘A’ genome. Meanwhile, Pisang Raja, which could be employed as a dessert or cooking banana, and Pisang Kepok as a cooking banana, exhibited a closer relationship. Various cultivars showed different nutritional compositions in their fruits. In every 100 g of edible portion, the nutrient values of the six bananas contained high carbohydrates and total energy, abundant vitamin C and K, moderate total fibers and protein, as well as low fat and Fe. Based on the nutritional composition, six Bali banana cultivars were found suitable as valuable ingredients in alleviating food insecurity or as dietary components.


Bali; cooking banana; dessert banana; morphology; nutrient content

Full Text:



Afzal, M. F., Khalid, W., Akram, S., Khalid, M. A., Zubair, M., Kauser, S., Abdelsamea Mohamedahmed, K., Aziz, A., & Anusha Siddiqui, S. (2022). Bioactive profile and functional food applications of banana in food sectors and health: A review. International Journal of Food Properties, 25(1), 2286–2300.

Al-Sahlany, S. T. G., & Al-musafer, A. M. S. (2020). Effect of substitution percentage of banana peels flour in chemical composition, rheological characteristics of wheat flour and the viability of yeast during dough time. Journal of the Saudi Society of Agricultural Sciences, 19(1), 87–91.

Anggraeni, R., & Saputra, D. (2018). Physicochemical characteristics and sensorial properties of dry noodle supplemented with unripe banana flour. Food Research, 2(3), 270–278.

AOAC, I., & Latimer, G. W. (2012). Official methods of analysis of AOAC international (19th ed.). Gaithersburg: AOAC International. Retrieved from

Ashokkumar, K., Elayabalan, S., Shobana, V., Kumar, P., & Pandiyan, M. (2018). Nutritional value of banana (Musa spp.) cultivars and its future prospects: A review. Current Advances in Agricultural Sciences (An International Journal), 10(2), 73–77.

Black, R. E., Victora, C. G., Walker, S. P., Bhutta, Z. A., Christian, P., de Onis, M., Ezzati, M., Grantham-McGregor, S., Katz, J., Martorell, R., & Uauy, R. (2013). Maternal and child undernutrition and overweight in low-income and middle-income countries. The Lancet, 382(9890), 427–451.

Carr, A., & Maggini, S. (2017). Vitamin C and immune function. Nutrients, 9(11), 1211.

Chandra, R. D., Siswanti, C. A., Prihastyanti, M. N. U., Heriyanto, Limantara, L., & Brotosudarmo, T. H. P. (2020). Evaluating provitamin A carotenoids and polar metabolite compositions during the ripening stages of the Agung Semeru banana (Musa paradisiaca L. AAB). International Journal of Food Science, 2020, 8503923.

Čížková, J., Hřibová, E., Humplíková, L., Christelová, P., Suchánková, P., & Doležel, J. (2013). Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.). PLoS ONE, 8(1), e54808.

Comai, S., Bertazzo, A., Costa, C. V. L., & Allegri, G. (2011). Quinoa: Protein and nonprotein tryptophan in comparison with other cereal and legume flours and bread. Flour and Breads and Their Fortification in Health and Disease Prevention, 113–125.

Courtney-Martin, G., Ball, R., Pencharz, P., & Elango, R. (2016). Protein requirements during aging. Nutrients, 8(8), 492.

Díaz-Tocados, S., Rodríguez-Ortiz, M., Almadén, Y., Carvalho, C., Frazão, J., Rodríguez, M., & Muñoz-Castañeda, J. (2022). Efecto de una dieta rica en calcio sobre el metabolismo mineral y óseo en ratas. Revista de Osteoporosis y Metabolismo Mineral, 14(1), 48–54.

Dotto, J., Matemu, A. O., & Ndakidemi, P. A. (2019). Nutrient composition and selected physicochemical properties of fifteen Mchare cooking bananas: A study conducted in northern Tanzania. Scientific African, 6, e00150.

Fitriyah, A., Ariyanti, E. E., Damanhuri, & Kuswanto. (2017). Pengelompokan 30 kultivar pisang (Musa spp.) berdasarkan genom dan hubungan kekerabatannya. Jurnal Produksi Tanaman, 5(4), 568–575. Retrieved from

Ghosh, J., Ghosh, P. D., & Choudhury, P. R. (2014). An assessment of genetic relatedness between soybean [Glycine max (L.) Merrill] cultivars using SSR markers. American Journal of Plant Sciences, 5(20), 3089–3096.

Gusmiati, L. H., Hapsari, L., & Wahyudi, D. (2018). Keragaman dan pengelompokan morfologi 10 pisang olahan (Musa cv. Grup ABB) koleksi Kebun Raya Purwodadi LIPI. Floribunda, 5(8), 299–314. Retrieved from

Hapsari, L. (2011). Performance of seven accessions banana cultivars triploid Musa acuminata group (AAA) collection of Purwodadi Botanic garden. Proceedings of Humboldt Kolleg Synergy, Networking and The Role of Fundamental Research Development in ASEAN in Conjuction with The International Conference on Natural Sciences, pp. 283–287. Retrieved from

Hapsari, L., Kennedy, J., Lestari, D. A., Masrum, A., & Lestarini, W. (2017). Ethnobotanical survey of bananas (Musaceae) in six districts of East Java, Indonesia. Biodiversitas, 18(1), 160–174.

Hapsari, L., & Lestari, D. A. (2016). Fruit characteristic and nutrient values of four Indonesian banana cultivars (Musa spp.) at different genomic groups. AGRIVITA, Journal of Agricultural Science, 38(3), 303–311.

Hermansen, K., Rasmussen, O., Gregersen, S., & Larsen, S. (1992). Influence of ripeness of banana on the blood glucose and insulin response in type 2 diabetic subjects. Diabetic Medicine, 9(8), 739–743.

Hinge, V. R., Shaikh, I. M., Chavhan, R. L., Deshmukh, A. S., Shelake, R. M., Ghuge, S. A., Dethe, A. M., Suprasanna, P., & Kadam, U. S. (2022). Assessment of genetic diversity and volatile content of commercially grown banana (Musa spp.) cultivars. Scientific Reports, 12(1), 7979.

Ioniță-Mîndrican, C.-B., Ziani, K., Mititelu, M., Oprea, E., Neacșu, S. M., Moroșan, E., Dumitrescu, D.-E., Roșca, A. C., Drăgănescu, D., & Negrei, C. (2022). Therapeutic benefits and dietary restrictions of fiber intake: A state of the art review. Nutrients, 14(13), 2641.

IPGRI. (1996). Descriptors for banana (Musa spp.). International Plant Genetic Resources Institute: INIBAP. Retrieved from

Kallow, S., Mertens, A., Janssens, S. B., Vandelook, F., Dickie, J., Swennen, R., & Panis, B. (2022). Banana seed genetic resources for food security: Status, constraints, and future priorities. Food and Energy Security, 11(1), e345.

Karyawati, A. S., Buyung, N. G., & Waluyo, B. (2022). Effect of agronomic and morphological characteristics of Glycine max L. Merrill in advanced separation. Asian Journal of Plant Sciences, 21(3), 440–447.

Kookal, S. K., & Thimmaiah, A. (2018). Nutritional composition of staple food bananas of three cultivars in India. American Journal of Plant Sciences, 9(12), 2480–2493.

Kumar, K. P. S., Bhowmik, D., Duraivel, S., & Umadevi, M. (2012). Traditional and medicinal uses of banana. Journal of Pharmacognosy and Phytochemistry, 1(3), 51–63. Retrieved from

Kumar Rana, G., Singh, Y., Mishra, S. P., & Rahangdale, H. K. (2018). Potential use of banana and its by-products: A review. International Journal of Current Microbiology and Applied Sciences, 7(6), 1827–1832.

Maldonado dos Santos, J. V., Sant’Ana, G. C., Wysmierski, P. T., Todeschini, M. H., Garcia, A., & Meda, A. R. (2022). Genetic relationships and genome selection signatures between soybean cultivars from Brazil and United States after decades of breeding. Scientific Reports, 12(1), 10663.

Miller, K. C. (2012). Plasma potassium concentration and content changes after banana ingestion in exercised men. Journal of Athletic Training, 47(6), 648–654.

Ministry of Health Republic of Indonesia. (2019). Indonesia’s Health Minister Regulation Number 28 Year 2019 concerning Recommended Nutritional Adequacy Rate for the Indonesian Nation. Retrieved from

Nunes, E. A., Colenso‐Semple, L., McKellar, S. R., Yau, T., Ali, M. U., Fitzpatrick‐Lewis, D., Sherifali, D., Gaudichon, C., Tomé, D., Atherton, P. J., Robles, M. C., Naranjo‐Modad, S., Braun, M., Landi, F., & Phillips, S. M. (2022). Systematic review and meta‐analysis of protein intake to support muscle mass and function in healthy adults. Journal of Cachexia, Sarcopenia and Muscle, 13(2), 795–810.

Ohizua, E. R., Adeola, A. A., Idowu, M. A., Sobukola, O. P., Afolabi, T. A., Ishola, R. O., Ayansina, S. O., Oyekale, T. O., & Falomo, A. (2017). Nutrient composition, functional, and pasting properties of unripe cooking banana, pigeon pea, and sweet potato flour blends. Food Science & Nutrition, 5(3), 750–762.

Onwuka, G. I., Onyemachi, A. D., & David-Chukwu, N. P. (2015). Comparative evaluation of proximate composition and functional properties of two varieties of cooking banana. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 9(1), 01–04.

Oyeyinka, B. O., & Afolayan, A. J. (2019). Comparative evaluation of the nutritive, mineral, and antinutritive composition of Musa sinensis L. (banana) and Musa paradisiaca L. (plantain) fruit compartments. Plants, 8(12), 598.

Pragati, S., I., G., & Ravish, K. (2014). Comparative study of ripe and unripe banana flour during storage. Journal of Food Processing & Technology, 5(11), 1–6.

Rai, I. N., Dwivany, F. M., Sutanto, A., Meitha, K., Sukewijaya, I. M., & Ustriyana, I. N. G. (2018). Biodiversity of Bali banana (Musaceae) and its usefulness. HAYATI Journal of Biosciences, 25(2), 47.

Rinaldi, R., Mansyurdin, & Hermanto, C. (2014). Pendugaan ploidi dan kekerabatan beberapa aksesi pisang hasil koleksi Balitbu Tropika Solok. Jurnal Sainstek, 6(1), 17–23. Retrieved from

Ronner, E., van de Ven, G. J., Nowakunda, K., Tugumisirize, J., Kayiita, J., Taulya, G., Uckert, G., & Descheemaeker, K. K. E. (2023). What future for banana-based farming systems in Uganda? A participatory scenario analysis. Agricultural Systems, 209, 103669.

Sayed, M. R. I., Alshallash, K. S., Safhi, F. A., Alatawi, A., ALshamrani, S. M., Dessoky, E. S., Althobaiti, A. T., Althaqafi, M. M., Gharib, H. S., Shafie, W. W. M., Awad-Allah, M. M. A., & Sultan, F. M. (2022). Genetic diversity, analysis of some agro-morphological and quality traits and utilization of plant resources of Alfalfa. Genes, 13(9), 1521.

Szabo, K., Pamfil, D., Bădărău, A. S., & Hârţa, M. (2021). Assessment of genetic diversity and population structure of the endangered Astragalus exscapus L. subsp. transsilvanicus through DNA-based molecular markers. Plants, 10(12), 2732.

Tapsell, L. C., Neale, E. P., Satija, A., & Hu, F. B. (2016). Foods, nutrients, and dietary patterns: Interconnections and implications for dietary guidelines. Advances in Nutrition, 7(3), 445–454.

Thuy, N. M., Linh, M. N., My, L. T. D., Minh, V. Q., & Tai, N. V. (2021). Physico-chemical changes in “Xiem” banana cultivar (cultivated in Vietnam) during ripening and storage at different temperatures. Food Research, 5(6), 229–237.

Ubwa, S. T., Ishu, M. O., Offem, J. O., Tyohemba, R. L., & Igbum, G. O. (2014). Proximate composition and some physical attributes of three mango (Mangifera indica L.) fruit varieties. International Journal of Agronomy and Agricultural Research, 4(2), 21–29. Retrieved from

Vázquez¬Ovando, J. A. (2012). Sensory and physico-chemical quality of banana fruits “Grand Naine” grown with biofertilizer. African Journal of Agricultural Research, 7(33), 4620–4626. Retrieved from

Wahyudi, D., Uslan, & Rifliyah, K. (2020). Genome evaluation of banana cultivars based on morphological character and inter-simple sequence repeat (ISSR) molecular marker. Biodiversitas, 21(7), 2982–2990.

Wahyuningtyas, W., Retnoningsih, A., & Rahayu, E. S. (2009). Genetic diversity of B genome bananas based on microsatellite marker. Biosaintifika, 1(1), 1–10. Retrieved from

Yangilar, F. (2015). Effects of green banana flour on ice cream’s physical, chemical and sensory properties. Food Technology and Biotechnology, 53(3), 315–323.

Zhang, H., Yang, S., Joyce, D. C., Jiang, Y., Qu, H., & Duan, X. (2010). Physiology and quality response of harvested banana fruit to cold shock. Postharvest Biology and Technology, 55(3), 154–159.


  • There are currently no refbacks.