Cocopeat Perlite Mixture as an Alternative for Rooted Cuttings Growth Medium of Impatiens hawkeri x platypetala in Indonesia

Herni Shintiavira, Minangsari Dewanti, Fitri Rachmawati, Yati Nurlaeni, Dani Nurdina, Sadli Sadli, Safani Ariyantika, Suskandari Kartikaningrum

Abstract

Impatiens hawkeri x platypetala rooted cuttings are typically cultivated using rice husks as a substrate. However, due to the poor water-holding capacity of this medium, Impatiens grows slowly in this environment. A viable alternative is the cocopeat perlite mixture which has a better water-holding capacity compared to the rice husk. Currently, there is no sufficient information available regarding the best growth medium to improve the quality of I. hawkeri x platypetala rooted cuttings in Indonesia. Therefore, this study aimed to obtain the best medium for quality rooted cuttings I. hawkeri x platypetala. The method employed was a randomized complete block design with two factors. The first factor was the Impatiens varieties consisting of Impala Agrihorti, Imadata Agrihorti, and Lavender, while the second was the growth medium, comprised of four levels namely rice husk (control), as well as a mixture of cocopeat with 3%, 5% and 8% perlite. The result showed that there was no interaction between varieties and growth medium. The mixture of 3% perlite in cocopeat exhibited better outcomes compared to other treatments. This medium increased the number and length of roots, stem diameter, plant height, leaves thickness, leaves number and survival rate. Therefore, the addition of 3% perlite in cocopeat could replace the rice husk as a rooted cutting growth medium for I. hawkeri x platypetala.

Keywords

assimilate partitioning; morphology; soilless culture; survival rate; water-holding capacity

Full Text:

PDF

References

A’saf, T. S., Al-Ajlouni, M. G., Ayad, J. Y., Othman, Y. A., & Hilaire, R. St. (2020). Science of the total environment performance of six different soilless green roof substrates for the Mediterranean region. Science of the Total Environment, 730, 139182. https://doi.org/10.1016/j.scitotenv.2020.139182

Adekiya, A. O., Ayeni, J. F., Olayanju, A., Aremu, C., Akpor, O. B., Olaniran, A. F., Wutem Sunny Ejue, Ndupuechi, D. I., & Suleiman, O. K. (2022). Potentials of soilless substrates from biochar and rice husk as a replacement for cocopeat in Nigeria on tomato (Solanum lycopersicum). Research on Crops, 23(1), 139–148. https://doi.org/10.31830/2348-7542.2022.020

Alam, M. N. H. Z., Othman, N. S. I. A., Samsudin, S. A., Johari, A., Hassim, M. H., & Kamaruddin, M. J. (2020). Carbonized rice husk and cocopeat as alternative media bed for aquaponic system. Sains Malaysiana, 49(3), 483–492. http://dx.doi.org/10.17576/jsm-2020-4903-03

Alavi, S. A., Ghehsareh, A. M., Soleymani, A., Panahpour, E., & Mozafari, M. (2020). Ecotoxicology and environmental safety peppermint (Mentha piperita L.) growth and biochemical properties affected by magnetized saline water. Ecotoxicology and Environmental Safety, 201, 110775. https://doi.org/10.1016/j.ecoenv.2020.110775

Awang, Y., Shaharom, A. S., Mohamad, R. B., & Selamat, A. (2009). Chemical and physical characteristics of cocopeat-based media mixtures and their effects on the growth and development of Celosia cristata. American Journal of Agricultural and Biological Sciences, 4(1), 63–71. https://doi.org/10.3844/ajabssp.2009.63.71

Ayu, D. P., Putri, E. R., Izza, P. R., & Nurkhamamah, Z. (2021). Pengolahan limbah serabut kelapa menjadi media tanam cocopeat dan cocofiber di Dusun Pepen. Jurnal Praksis Dan Dedikasi (JPDS), 4(2), 93–100. http://dx.doi.org/10.17977/um032v4i2p92-100

Bamdad, H., Papari, S., Lazarovits, G., & Berruti, F. (2022). Soil amendments for sustainable agriculture: Microbial organic fertilizers. Soil Use and Management, 38(1), 94–120. https://doi.org/10.1111/sum.12762

Banitalebi, G., Mosaddeghi, M. R., & Shariatmadari, H. (2021). Evaluation of physico chemical properties of biochar-based mixtures for soilless growth media. Journal of Material Cycles and Waste Management, 23(3), 950–964. https://doi.org/10.1007/s10163-021-01181-z

Bharti, A., Prasanna, R., Dantuluri, V. S. R., Chawla, G., Shivay, Y. S., & Nain, L. (2021). Cyanobacterium amended mixes as priming options for stimulating growth and improving nutrient availability in nursery-grown Chrysanthemum rooted stem cuttings. Acta Physiologiae Plantarum, 43(7), 102. https://doi.org/10.1007/s11738-021-03273-7

Dede, Ö. H., Köseoğlu, G., Özdemir, S., & Celebi, A. (2006). Effects of organic waste substrates on the growth of impatiens. Turkish Journal of Agriculture and Forestry, 30(5), 375–381. Retrieved from https://journals.tubitak.gov.tr/agriculture/vol30/iss5/8

Di Benedetto, A., & Pagani, A. (2012). Difficulties and possibilities of alternative substrates for ornamental bedding plants: An ecophysiological approach. Peat: Formation, Uses and Biological Effects. New York, USA: Nova Science Publishers. Retrieved from https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Difficulties+and+possibilities+of+alternative+substrates+for+ornamental+bedding+plants%E2%80%AF%3AAn+ecophysiological+approach&btnG=

Djaingsastro, A. J., Sinaga, H., & Sitorus, R. M. (2021). The effect of cocopeat and rice husk planting media hydroponically on the growth of palm oil in pre nursery. BIOLINK (Jurnal Biologi Lingkungan Industri Kesehatan), 7(2), 195–203. https://doi.org/10.31289/biolink.v7i2.4115

Francini, A., & Sebastiani, L. (2019). Abiotic stress eff ects on performance of horticultural crops. Horticulturae, 5(4), 67. https://doi.org/10.3390/horticulturae5040067

Ghanbari, M. A., Jowkar, A., Salehi, H., & Zarei, M. (2019). Effects of polyploidization on petal characteristics and optical properties of Impatiens walleriana (Hook.). Plant Cell, Tissue and Organ Culture (PCTOC), 138(2), 299–310. https://doi.org/10.1007/s11240-019-01625-3

Ghehsareh, A. M., Hematian, M., & Kalbasi, M. (2012). Comparison of date-palm wastes and perlite as culture substrates on growing indices in greenhouse cucumber. International Journal of Recycling of Organic Waste in Agriculture, 1, 5. https://doi.org/10.1186/2251-7715-1-5

Huang, W., Zhong, Y., Zhang, C., Ren, M., Du, Y., & Song, X. (2022). Leaf traits and water use characteristic of Impatiens hainanensis, a limestone endemic plant under different altitudes in dry and foggy seasons. Water, 14(2), 139. https://doi.org/10.3390/w14020139

ILahi, W. F. F., & Ahmad, D. (2017). A Study on the physical and hydraulic characteristics of cocopeat perlite mixture as a growing media in containerized plant production. Sains Malaysiana, 46(6), 975–980. http://dx.doi.org/10.17576/jsm-2017-4606-17

Kazemi, F., Rabbani, M., & Jozay, M. (2020). Investigating the plant and air-quality performances of an internal green wall system under hydroponic conditions. Journal of Environmental Management, 275, 111230. https://doi.org/10.1016/j.jenvman.2020.111230

Kobori, M. M. R. G., Mello, S. de C., Freitas, I. S. de, Silveira, F. F., Alves, M. C., & Azevedo, R. A. (2022). Supplemental light with different blue and red ratios in the physiology, yield and quality of Impatiens. Scientia Horticulturea, 306, 111424. https://doi.org/10.1016/j.scienta.2022.111424

Kumarasinghe, H., Subasinghe, S., & Ransimala, D. (2015). Effect of coco peat particle size for optimum growth nursery plant of greenhouse vegetables. Tropical Agricutural Research & Extension, 18(1), 51–57. Retrieved from http://ir.lib.ruh.ac.lk/xmlui/handle/iruor/7877

Li, Z., Zhang, X., Zhao, Y., Li, Y., Zhang, G., Peng, Z., & Zhang, J. (2018). Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnology Journal, 16(1), 86–99. https://doi.org/10.1111/pbi.12751

Liu, W., Wu, J., Lian, J., Zhang, X., Zeb, A., Zhou, Q., & Sun, Y. (2021). Potential use of Impatiens balsamina L. For bioremediation of lead and polychlorinated biphenyl contaminated soils. Land Degradation & Development, 32(13), 3773–3784. https://doi.org/10.1002/ldr.3857

Liu, Y., Xu, W., Wang, Y., Hao, W., Zhou, Q., & Liu, J. (2021). Growth responses and accumulation characteristics of three ornamental plants to Sn contamination in soil. Agriculture, 11(3), 205. https://doi.org/10.3390/agriculture11030205

Lojo, J. De, Gandolfo, E., Giardina, E., Boschi, C., & Benedetto, A. Di. (2019). Growing media quality and plug cell volume would be interactive abiotic stresses for Impatiens walleriana pot yield. Asian Journal of Agricultural and Horticultural Research, 4(1), 1–14. https://doi.org/10.9734/AJAHR/2019/v4i130008

Lojo, J. De, Gandolfo, E., Gómez, D., Feuring, V., Monti, S., & Giardina, E. (2017). Root restriction effects on the bedding pot plant Impatiens walleriana. Journal of Experiment Agriculture International, 15(4), 1–16. https://doi.org/10.9734/JEAI/2017/31997

Lojo, J. M. De, Gandolfo, E., Feuring, V., Giardina, E. B., Boschi, C. L., & Benedetto, A. Di. (2021). Garden post-transplant effects of pre-transplant plug cell volume and growing medium quality (as abiotic stresses) in Impatiens walleriana. Ornamental Horticulture, 27(3), 320–333. https://doi.org/10.1590/2447-536X.v27i3.2295

Lopez, R. G., & Runkle, E. S. (2008). Photosynthetic daily light integral during propagation influences rooting and growth of cuttings and subsequent development of New Guinea Impatiens and Petunia. HortScience, 43(7), 2052–2059. https://doi.org/10.21273/HORTSCI.43.7.2052

Luo, C., Li, Y., Budhathoki, R., Shi, J., Yer, H., Li, X., Yan, B., Wang, Q., Wen, Y., Huang, M., & Huang, H. (2021). Complete chloroplast genomes of Impatiens cyanantha and Impatiens monticola: Insights into genome structures, mutational hotspots, comparative and phylogenetic analysis with its congeneric species. PLoS ONE, 16(4), e0248182. https://doi.org/10.1371/journal.pone.0248182

Masquelier, S., Sozzi, T., Bouvet, J. C., Bésiers, J., & Deogratias, J. M. (2022). Conception and development of recycled raw materials (coconut fiber and bagasse)-based substrates enriched with soil microorganisms (Arbuscular Mycorrhizal fungi, Trichoderma spp. and Pseudomonas spp.) for the soilless cultivation of tomato (S. lycopersicum). Agronomy, 12(4), 767. https://doi.org/10.3390/agronomy12040767

Massa, D., Prisa, D., Lazzereschi, S., Cacini, S., & Burchi, G. (2018). Heterogeneous response of two bedding plants to peat substitution by two green composts. Horticultural Science, 45(3), 164–172. https://doi.org/10.17221/1/2017-HORTSCI

Mourouzidou, S., Ntinas, G. K., Tsaballa, A., & Monokrousos, N. (2023). Introducing the power of plant growth promoting microorganisms in soilless systems : A promising alternative for sustainable agriculture. Sustainability, 15(7), 5959. https://doi.org/10.3390/su15075959

Pagani, A., Molinari, J., Lavado, R., & Benedetto, A. Di. (2015). Behavior of Impatiens wallerana Hook. F in alternative pot substrates: Mechanisms involved and research perspectives. Journal of Plant Nutrition, 38(14), 2185–2203. https://doi.org/10.1080/01904167.2014.988357

Parra, M., Abrisqueta, I., Hortelano, D., Alarcon, J. J., Intrigliolo, D. S., & Rubio-Asensio, J. S. (2022). Open field soilless system using cocopeat substrate bags improves tree performance in a young Mediterranean persimmon orchard. Scientia Horticulturae, 291, 110614. https://doi.org/10.1016/j.scienta.2021.110614

Patil, S. T., Kadam, U. S., Mane, M. S., Mahale, D. M., & Dhekale, J. S. (2020). Hydroponic growth media (substrate): A review. Internationa; Research Journal of Pure & Applied Chemistry, 21(23), 106–113. https://doi.org/10.9734/IRJPAC/2020/v21i2330307

Permanasari, P. N., & Susila, A. D. (2018). Studi jenis media pembibitan terhadap pertumbuhan bibit mentimun (Cucumis sativus L.). Agrovigor: Jurnal Agroekoteknologi, 11(1), 58–64. https://doi.org/10.21107/agrovigor.v11i1.4376

Sarkar, M. D., Rahman, M. J., Uddain, J., Quamrizzaman, M., Azad, M. O. K., Rahman, M. H., Islam, M. J., Rahman, M. S., Chou, K.-Y., & Naznin, M. T. (2021). Nutritional content of red leaf lettuce (Lactuca sativa L.) grown in organic substrates. Plants, 10(6), 1220. https://doi.org/10.3390/plants10061220

Shintiavira, H., Purba, A. E., Kartikaningrum, S., & Koseki, A. (2023). Identifying drought-tolerant Impatiens genotypes by using water stress treatment. Caraka Tani: Journal of Sustainable Agriculture, 38(1), 40–52. https://doi.org/10.20961/carakatani.v38i1.62652

Singh, A. K., Singh, R., Kumar, R., Gupta, A. K., Kumar, H., Rai, A., Kanawjia, A., Tomar, K. S., Pandey, G., Singh, B., Kumar, S., Dwivedi, S. V., Kumar, S., Pathania, K., Ojha, G., & Singh, A. (2023). Evaluating sustainable and environment friendly growing media composition for pot mum (Chrysanthemum morifolium Ramat.). Sustainability, 15(1), 536. https://doi.org/10.3390/su15010536

Singh, V. P., Nimbolkar, P. K., Singh, S. K., Mishra, N. K., & Tripathi, A. (2015). Effect of growing media, Pgrs and seasonal variability on rooting ability and survival of lemon (Citrus limon L.) cuttings. International Journal of Agriculture, Environment and Biotechnology, 8(3), 593–599. https://doi.org/10.5958/2230-732X.2015.00065.0

Soehendi, R., Kartikaningrum, S., Wegadara, M., Ratule, M. T., Thamrin, M., & Marwoto, B. (2022). Interspecific hybridization of Impatiens sp. II International Symposium on Tropical and Subtropical Ornamentals 1334(pp. 37–46). https://doi.org/10.17660/ActaHortic.2022.1334.5

Suarez-Caceres, G. P., Perez-Urrestarazu, L., Aviles, M., Borrero, C., Eguibar, J. R. L., & Fernandez-Cabanas, V. M. (2021). Susceptibility to water-borne plant diseases of hydroponic vs. aquaponics systems. Aquaculture, 544, 737093. https://doi.org/10.1016/j.aquaculture.2021.737093

Tracy, S. R., Black, C. R., Roberts, J. A., & Mooney, S. J. (2013). Exploring the interacting effect of soil texture and bulk density on root system development in tomato (Solanum lycopersicum L.). Environmental and Experimental Botany, 91, 38–47. https://doi.org/10.1016/j.envexpbot.2013.03.003

Wang, W., He, Y., Cao, Z., & Deng, Z. (2018). Induction of tetraploids in impatiens (Impatiens walleriana) and characterization of their changes in morphology and resistance to Downy Mildew. HortScience horts, 53(7), 925–931. https://doi.org/10.21273/HORTSCI13093-18

Xu, W., Lu, N., Kikuchi, M., & Takagaki, M. (2021). Effects of node position and electric conductivity of nutrient solution on adventitious rooting of nasturtium (Tropaeolum majus L.) cuttings. Agronomy, 11(2), 363. https://doi.org/10.3390/agronomy11020363

Zhang, J., & Cao, K. (2009). Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species. Functional Ecology, 23(4), 658–667. https://doi.org/10.1111/j.1365-2435.2009.01552.x

Refbacks

  • There are currently no refbacks.