Effect of Shading Percentage and Potassium Dosages on Growth and Yield of Cutleaf Groundcherry (Physalis angulata L.)

Wiwin Sumiya Dwi Yamika, Nurul Aini, Budi Waluyo, Agus Prayitno Kurniawan


Cutleaf groundcherry is a medicinal herbaceous plant that has not been widely cultivated. Adjustment to the light intensities supported by the fulfillment of essential macro-nutrient underlies the agronomic consideration for cropping system determination. The study aimed to examine the growth and yield of cutleaf groundcherry grown under shade nets of various shading percentages and potassium application at different dosages. A split-plot design was used for this pot experiment repeated three times. The main plot was the shading percentages (0, 25, 50 and 75), while potassium dosages (0, 60, 120 and 180 kg ha-1) were the subplot. The result showed that several growth variables were affected by the interaction between shading percentages and potassium dosage, whereas yield variables were not. Under the high level of shading, leaf number (41% to 50%), leaf area (28% to 50%), and shoot dry weight (70% to 85%) were reduced at all potassium dosages. Potassium dosage at 120 kg ha-1 was required to achieve better growth under full sun or soft shading. Shading at 50% and upper significantly decreased fruit production by 30% lower fruit number, 50% to 80% lower fruit weight, and 15% lower total soluble solids (TSS). In addition, potassium fertilizer at 120 kg K2O ha-1 improved fruit weight but did not affect TSS. It can be concluded that cutleaf groundcherry is able to grow well under high intensity of light and need an adequate supply of potassium to improve growth, yield and fruit quality.


abiotic stress; light intensity; nutrient; photosynthesis; TSS

Full Text:



Ahammed, G. J., Chen, Y., Liu, C., & Yang, Y. (2022). Light regulation of potassium in plants. Plant Physiology and Biochemistry, 170, 316–324. https://doi.org/10.1016/j.plaphy.2021.12.019

Ahmad, N., Sarfraz, M., Farooq, U., Arfan-ul-haq, M., Mushtaq, M. Z., & Ali, M. A. (2015). Effect of potassium and its time of application on yield and quality of tomato. International Journal of Scientific and Research Publications, 5(9), 1–4. Retrieved from https://www.ijsrp.org/research-paper-0915/ijsrp-p45120.pdf

Angmo, P., Phuntsog, N., & Namgail, D. (2021). Effect of shading and high temperature amplitude in greenhouse on growth, photosynthesis, yield and phenolic contents of tomato (Lycopersicum esculentum Mill.). Physiology and Molecular Biology of Plants, 27(7), 1539–1546. https://doi.org/10.1007/s12298-021-01032-z

Argade, M. B., Kadam, J. H., Garande, V. K., Patgaonkar, D. R., Patil, V. S., & Sonawane, P. N. (2018). Effect of different shading intensities on growth and yield of cherry tomato. Journal of Applied and Natural Science, 10(1), 352–357. https://doi.org/10.31018/jans.v10i1.1629

Biondi, F., Balducci, F., Capocasa, F., Visciglio, M., Mei, E., Vagnoni, M., Mezzetti, B., & Mazzoni, L. (2021). Environmental conditions and agronomical factors influencing the levels of phytochemicals in Brassica vegetables responsible for nutritional and sensorial properties. Applied Sciences (Switzerland), 11(4), 1927. https://doi.org/10.3390/app11041927

Chen, J., Wu, S., Dong, F., Li, J., Zeng, L., Tang, J., & Gu, D. (2021). Mechanism underlying the shading-induced chlorophyll accumulation in tea leaves. Frontiers in Plant Science, 12, 779819. https://doi.org/10.3389/fpls.2021.779819

Çolpan, E., Zengin, M., & Özbahçe, A. (2013). The effects of potassium on the yield and fruit quality components of stick tomato. Horticulture Environment and Biotechnology, 54, 20–28. https://doi.org/10.1007/s13580-013-0080-4

Cui, J., & Tcherkez, G. (2021). Potassium dependency of enzymes in plant primary metabolism. Plant Physiology and Biochemistry, 166, 522–530. https://doi.org/10.1016/j.plaphy.2021.06.017

Da Silva, D. F., Pio, R., Soares, J. D. R., Elias, H. H. D. S., Villa, F., & Vilas Boas, E. V. D. B. (2016). Light spectrum on the quality of fruits of physalis species in subtropical area. Bragantia, 75(3), 371–376. https://doi.org/10.1590/1678-4499.463

Esmaeili, S., Aliniaeifard, S., Dianati Daylami, S., Karimi, S., Shomali, A., Didaran, F., Telesiński, A., Sierka, E., & Kalaji, H. M. (2022). Elevated light intensity compensates for nitrogen deficiency during chrysanthemum growth by improving water and nitrogen use efficiency. Scientific Reports, 12, 10002. https://doi.org/10.1038/s41598-022-14163-4

Ferreira, L. M. dos S., do Vale, A. E., de Souza, A. J., Leite, K. B., Sacramento, C., Moreno, M. L. V., Araujo, T. H., Soares, M. B. P., & Grassi, M. F. R. (2019). Anatomical and phytochemical characterization of Physalis angulata L: A plant with therapeutic potential. Pharmacognosy Research, 11(2), 171–177. https://dx.doi.org/10.4103/pr.pr_97_18

Firdaus, A., Ashari, S., Khoiriyah, L. L., & Waluyo, B. (2022). Phenological of cutleaf groundcherry (Physalis angulata L.) based on BBCH scale. Jurnal Agronomi Tanaman Tropika, 4(2), 241–254. https://doi.org/10.36378/juatika.v4i2.2063

Gaurav, A. K., Singh, B., Jain, R., Janakiram, T., Swaroop, K., Singh, B., Jain, R., & Gopalakrishnan, S. (2014). Microclimate modification under different shade levels and its effect on the growth of Dracaena fragrans. Journal of Ornamental Horticulture, 17(1&2), 12–17. https://doi.org/10.5958/0974-0112.2016.00025.6

Gerardeaux, E., Jordan-Meille, L., Constantin, J., Pellerin, S., & Dingkuhn, M. (2010). Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.). Environmental and Experimental Botany, 67(3), 451–459. https://doi.org/10.1016/j.envexpbot.2009.09.008

Hasanuzzaman, M., Bhuyan, M. H. M. B., Nahar, K., Hossain, M. S., Al Mahmud, J., Hossen, M. S., Masud, A. A. C., Moumita, & Fujita, M. (2018). Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8(3), 31. https://doi.org/10.3390/agronomy8030031

Hemon, A. F., Sumarjan, & Hanafi, A. R. (2021). Shade stress in various growth phases of peanut genotypes and its effect on agronomic characters and chlorophyll content. IOP Conference Series: Earth and Environmental Science, 712, 012017. https://doi.org/10.1088/1755-1315/712/1/012017

Ilić, Z. S., Milenković, L., Šunić, L., Barać, S., Mastilović, J., Kevrešan, Ž., & Fallik, E. (2017). Effect of shading by coloured nets on yield and fruit quality of sweet pepper. Zemdirbyste-Agriculture, 104(1), 53–62. https://doi.org/10.13080/z-a.2017.104.008

Iwansyah, A. C., Julianti, W. P., & Luthfiyanti, R. (2019). Characterization of nutrition, antioxidant properties, and toxicity of Physalis angulata L. plant extract. Asian Journal of Pharmaceutical and Clinical Research, 12(11), 95–99. https://doi.org/10.22159/ajpcr.2019.v12i11.35497

Javaria, S., Khan, M. Q., & Bakash, I. (2012). Effect of potassium on chemical and sensory attributes of tomato fruit. The Journal of Animal & Plant Science, 22(4), 1081–1085. Retrieved from http://www.thejaps.org.pk/docs/V-22-4/44.pdf

Jiang, C. D., Wang, X., Gao, H. Y., Shi, L., & Chow, W. S. (2011). Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum. Plant Physiology, 155(3), 1416–1424. https://doi.org/10.1104/pp.111.172213

Jiang, C., Johkan, M., Hohjo, M., Tsukagoshi, S., & Maruo, T. (2017). A correlation analysis on chlorophyll content and SPAD value in tomato leaves. HortResearch, 71, 37–42. https://doi.org/10.20776/S18808824-71-P37

Kapoor, L., Simkin, A. J., George Priya Doss, C., & Siva, R. (2022). Fruit ripening: Dynamics and integrated analysis of carotenoids and anthocyanins. BMC Plant Biology, 22, 27. https://doi.org/10.1186/s12870-021-03411-w

Kesumawati, E., Apriyatna, D., & Rahmawati, M. (2020). The effect of shading levels and varieties on the growth and yield of chili plants (Capsicum annuum L.). IOP Conference Series: Earth and Environmental Science, 425, 012080. https://doi.org/10.1088/1755-1315/425/1/012080

Khalid, M. H. B., Raza, M. A., Yu, H. Q., Sun, F. A., Zhang, Y. Y., Lu, F. Z., Si, L., Iqbal, N., Khan, I., Fu, F. L., & Li, W. C. (2019). Effect of shade treatments on morphology, photosynthetic and chlorophyll fluorescence characteristic of soybean (Glycine max L. Merr.). Applied Ecology and Environmental Research, 17(2), 2551–2569. https://doi.org/10.15666/aeer/1702_25512569

Kläring, H. P., & Krumbein, A. (2013). The effect of constraining the intensity of solar radiation on the photosynthesis, growth, yield and product quality of tomato. Journal of Agronomy and Crop Science, 199(5), 351–359. https://doi.org/10.1111/jac.12018

Kostecka-Gugała, A., Ledwozyw-Smoleń, I., Augustynowicz, J., Wyzgolik, G., Kruczek, M., & Kaszycki, P. (2015). Antioxidant properties of fruits of raspberry and blackberry grown in central Europe. Open Chemistry, 13(1), 000010151520150143. https://doi.org/10.1515/chem-2015-0143

Kusumaningtyas, R., Laily, N., & Limandha, P. (2015). Potential of ciplukan (Physalis angulata L.) as source of functional ingredient. Procedia Chemistry, 14, 367–372. https://doi.org/10.1016/j.proche.2015.03.050

Li, A., Li, S., Wu, X., Zhang, J., He, A., Zhao, G., & Yang, X. (2016). Effect of light intensity on leaf photosynthetic characteristics and accumulation of flavonoids in Lithocarpus litseifolius (Hance) Chun. (Fagaceae). Open Journal of Forestry, 6, 445–459. https://doi.org/10.4236/ojf.2016.65034

Lima, M. da S., Evangelista, A. F., dos Santos, G. G. L., Ribeiro, I. M., Tomassini, T. C. B., Pereira Soares, M. B., & Villarreal, C. F. (2014). Antinociceptive properties of physalin from Physalis angulata. Journal of Natural Products, 77(11), 2397–2403. https://doi.org/10.1021/np5003093

Ma, Q., Cao, X., Wu, L., Mi, W., & Feng, Y. (2016). Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.). Scientific Reports, 6, 21200. https://doi.org/10.1038/srep21200

Masabni, J., Sun, Y., Niu, G., & Del Valle, P. (2016). Shade effect on growth and productivity of tomato and chili pepper. HortTechnology, 26(3), 344–350. https://doi.org/10.21273/horttech.26.3.344

Medina-Medrano, J. R., Almaraz-Abarca, N., Socorro González-Elizondo, M., Uribe-Soto, J. N., González-Valdez, L. S., & Herrera-Arrieta, Y. (2015). Phenolic constituents and antioxidant properties of five wild species of Physalis (Solanaceae). Botanical Studies, 56, 24. https://doi.org/10.1186/s40529-015-0101-y

Morales, I., Martínez-Gutiérrez, G. A., Escamirosa-Tinoco, C., Nájera, C., da Cunha-Chiamolera, T. P. L., & Urrestarazu, M. (2018). Production and quality of Physalis ixocarpa Brot. Fruit under colored shade netting. HortScience, 53(6), 823–828. https://doi.org/10.21273/HORTSCI13100-18

Muhidin, Syam’Un, E., Kaimuddin, Musa, Y., Sadimantara, G. R., Usman, Leomo, S., & Rakian, T. C. (2018). The effect of shade on chlorophyll and anthocyanin content of upland red rice. IOP Conference Series: Earth and Environmental Science, 122, 012030. https://doi.org/10.1088/1755-1315/122/1/012030

Nguyen, G. N., Lantzke, N., & van Burgel, A. (2022). Effects of shade nets on microclimatic conditions, growth, fruit yield, and quality of eggplant (Solanum melongena L.): A case study in Carnarvon, Western Australia. Horticulturae, 8(8), 696. https://doi.org/10.3390/horticulturae8080696

Oosterhuis, D. M., Loka, D. A., Kawakami, E. M., & Pettigrew, W. T. (2014). The physiology of potassium in crop production. Advances in Agronomy, 126, 203–233. https://doi.org/10.1016/B978-0-12-800132-5.00003-1

Rezai, S., Etemadi, N., Nikbakht, A., Yousefi, M., & Majidi, M. M. (2018). Effect of light intensity on leaf morphology, photosynthetic capacity, and chlorophyll content in sage (Salvia officinalis L.). Horticultural Science and Technology, 36(1), 46–57. https://doi.org/10.12972/kjhst.20180006

Setiawati, T., Ayalla, A., Nurzaman, M., & Mutaqin, A. Z. (2018). Influence of light intensity on leaf photosynthetic traits and alkaloid content of kiasahan (Tetracera scandens L.). IOP Conference Series: Earth and Environmental Science, 166, 012025. https://doi.org/10.1088/1755-1315/166/1/012025

Setyorini, D., Sugito, Y., Aini, N., & Tyasmoro, S. Y. (2018). Lycopene, beta-carotene and productivity of tomato varieties at different shade levels under medium land of Indonesia. Journal of Applied Horticulture, 20(2), 92–96. https://doi.org/10.37855/JAH.2018.V20I02.17

Shah, P., & Bora, K. S. (2019). Phytochemical and therapeutic potential of physalis species : A review. IOSR Journal of Pharmacy And Biological Sciences, 14(4), 34–51. https://doi.org/10.9790/3008-1404033451

Shao, Q., Wang, H., Guo, H., Zhou, A., Huang, Y., Sun, Y., & Li, M. (2014). Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii. PLoS ONE, 9(2), e0085996. https://doi.org/10.1371/journal.pone.0085996

Shezi, S., Magwaza, L. S., Tesfay, S. Z., & Mditshwa, A. (2020). Biochemical changes in response to canopy position of avocado fruit (cv. ‘Carmen’ and ‘Hass’) during growth and development and relationship with maturity. Scientia Horticulturae, 265, 109227. https://doi.org/10.1016/j.scienta.2020.109227

Sholehah, D. N., Hariyanto, S., & Purnobasuki, H. (2021). Fruit development of groundcherry (Physalis angulata L.) in dryland. Australian Journal of Crop Science, 15(8), 1186–1191. https://doi.org/10.21475/ajcs.21.15.08.p3318

Simkin, A. J., Kapoor, L., Doss, C. G. P., Hofmann, T. A., Lawson, T., & Ramamoorthy, S. (2022). The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynthesis Research, 152(1), 23–42. https://doi.org/10.1007/s11120-021-00892-6

Singh, V. K., Dwivedi, B. S., & Rathore, S. S. (2021). Timing potassium applications to synchronize with plant demand. Improving Potassium Recommendations for Agricultural Crops (pp. 363–384). Springer. https://doi.org/10.1007/978-3-030-59197-7

Sonntag, F., Bunzel, D., Kulling, S., Porath, I., Pach, F., Pawelzik, E., Smit, I., & Naumann, M. (2020). Effect of potassium fertilization on the concentration of antioxidants in two cocktail tomato cultivars. Journal of Applied Botany and Food Quality, 93, 34–43. https://doi.org/10.5073/JABFQ.2020.093.005

Sulistyowati, D., Chozin, M. A., Syukur, M., Melati, M., & Guntoro, D. (2016). Selection of shade-tolerant tomato genotypes. Journal of Applied Horticulture, 18(2), 154–159. https://doi.org/10.37855/jah.2016.v18i02.27

Sun, C. P., Qiu, C. Y., Zhao, F., Kang, N., Chen, L. X., & Qiu, F. (2017). Physalins V-IX, 16,24-cyclo-13,14-seco withanolides from Physalis angulata and their antiproliferative and anti-inflammatory activities. Scientific Reports, 7, 4057. https://doi.org/10.1038/s41598-017-03849-9

Tränkner, M., Tavakol, E., & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163(3), 414–431. https://doi.org/10.1111/ppl.12747

Wan, Y., Zhang, Y., Zhang, M., Hong, A., Yang, H. Y., & Liu, Y. (2020). Shade effects on growth, photosynthesis and chlorophyll fluorescence parameters of three Paeonia species. PeerJ, 8, e9316. https://doi.org/10.7717/peerj.9316

Woldemariam, S. H., Lal, S., Zelelew, D. Z., & Solomon, M. T. (2018). Effect of potassium levels on productivity and fruit quality of tomato (Lycopersicon esculentum L.). Journal of Agricultural Studies, 6(1), 104–117. https://doi.org/10.5296/jas.v6i1.12262

Wu, S., Zhang, C., Li, M., Tan, Q., Sun, X., Pan, Z., Deng, X., & Hu, C. (2021). Effects of potassium on fruit soluble sugar and citrate accumulations in Cara Cara navel orange (Citrus sinensis L. Osbeck). Scientia Horticulturae, 283, 110057. https://doi.org/10.1016/j.scienta.2021.110057

Wu, Y., Yang, H., Yang, H., Zhang, C., Lyu, L., Li, W., & Wu, W. (2022). A physiological and metabolomic analysis reveals the effect of shading intensity on blueberry fruit quality. Food Chemistry: X, 15, 100367. https://doi.org/10.1016/j.fochx.2022.100367

Xu, J., Guo, Z., Jiang, X., Ahammed, G. J., & Zhou, Y. (2021). Light regulation of horticultural crop nutrient uptake and utilization. Horticultural Plant Journal, 7(5), 367–379. https://doi.org/10.1016/J.HPJ.2021.01.005

Yasoda, P. G. C., Pradheeban, L., Nishanthan, K., & Sivachandiran, S. (2018). Effect of different shade levels on growth and yield performances of cauliflower. International Journal of Environment, Agriculture and Biotechnology, 3(3), 948–955. https://doi.org/10.22161/ijeab/3.3.30

Yusof, F. F. M., Yaacob, J. S., Osman, N., Ibrahim, M. H., Wan-Mohtar, W. A. A. Q. I., Berahim, Z., & Zain, N. A. M. (2021). Shading effects on leaf gas exchange, leaf pigments and secondary metabolites of Polygonum minus Huds., an aromatic medicinal herb. Plants, 10(3), 608. https://doi.org/10.3390/plants10030608

Zhang, N., Van Westreenen, A., Anten, N. P. R., Evers, J. B., & Marcelis, L. F. M. (2020). Disentangling the effects of photosynthetically active radiation and red to far-red ratio on plant photosynthesis under canopy shading: A simulation study using a functional-structural plant model. Annals of Botany, 126(4), 635–646. https://doi.org/10.1093/aob/mcz197

Zhang, W., Zhang, X., Wang, Y., Zhang, N., Guo, Y., Ren, X., & Zhao, Z. (2018). Potassium fertilization arrests malate accumulation and alters soluble sugar metabolism in apple fruit. Biology Open, 7(12), bio024745. https://doi.org/10.1242/bio.024745

Zhou, T., Wang, L., Li, S., Gao, Y., Du, Y., Zhao, L., Liu, W., & Yang, W. (2019). Interactions between light intensity and phosphorus nutrition affect the p uptake capacity of maize and soybean seedling in a low light intensity area. Frontiers in Plant Science, 10, 395063. https://doi.org/10.3389/fpls.2019.00183


  • There are currently no refbacks.