Effect of Shading Percentage and Potassium Dosages on Growth and Yield of Cutleaf Groundcherry (Physalis angulata L.)
Abstract
Keywords
Full Text:
PDFReferences
Ahammed, G. J., Chen, Y., Liu, C., & Yang, Y. (2022). Light regulation of potassium in plants. Plant Physiology and Biochemistry, 170, 316–324. https://doi.org/10.1016/j.plaphy.2021.12.019
Ahmad, N., Sarfraz, M., Farooq, U., Arfan-ul-haq, M., Mushtaq, M. Z., & Ali, M. A. (2015). Effect of potassium and its time of application on yield and quality of tomato. International Journal of Scientific and Research Publications, 5(9), 1–4. Retrieved from https://www.ijsrp.org/research-paper-0915/ijsrp-p45120.pdf
Angmo, P., Phuntsog, N., & Namgail, D. (2021). Effect of shading and high temperature amplitude in greenhouse on growth, photosynthesis, yield and phenolic contents of tomato (Lycopersicum esculentum Mill.). Physiology and Molecular Biology of Plants, 27(7), 1539–1546. https://doi.org/10.1007/s12298-021-01032-z
Argade, M. B., Kadam, J. H., Garande, V. K., Patgaonkar, D. R., Patil, V. S., & Sonawane, P. N. (2018). Effect of different shading intensities on growth and yield of cherry tomato. Journal of Applied and Natural Science, 10(1), 352–357. https://doi.org/10.31018/jans.v10i1.1629
Biondi, F., Balducci, F., Capocasa, F., Visciglio, M., Mei, E., Vagnoni, M., Mezzetti, B., & Mazzoni, L. (2021). Environmental conditions and agronomical factors influencing the levels of phytochemicals in Brassica vegetables responsible for nutritional and sensorial properties. Applied Sciences (Switzerland), 11(4), 1927. https://doi.org/10.3390/app11041927
Chen, J., Wu, S., Dong, F., Li, J., Zeng, L., Tang, J., & Gu, D. (2021). Mechanism underlying the shading-induced chlorophyll accumulation in tea leaves. Frontiers in Plant Science, 12, 779819. https://doi.org/10.3389/fpls.2021.779819
Çolpan, E., Zengin, M., & Özbahçe, A. (2013). The effects of potassium on the yield and fruit quality components of stick tomato. Horticulture Environment and Biotechnology, 54, 20–28. https://doi.org/10.1007/s13580-013-0080-4
Cui, J., & Tcherkez, G. (2021). Potassium dependency of enzymes in plant primary metabolism. Plant Physiology and Biochemistry, 166, 522–530. https://doi.org/10.1016/j.plaphy.2021.06.017
Da Silva, D. F., Pio, R., Soares, J. D. R., Elias, H. H. D. S., Villa, F., & Vilas Boas, E. V. D. B. (2016). Light spectrum on the quality of fruits of physalis species in subtropical area. Bragantia, 75(3), 371–376. https://doi.org/10.1590/1678-4499.463
Esmaeili, S., Aliniaeifard, S., Dianati Daylami, S., Karimi, S., Shomali, A., Didaran, F., Telesiński, A., Sierka, E., & Kalaji, H. M. (2022). Elevated light intensity compensates for nitrogen deficiency during chrysanthemum growth by improving water and nitrogen use efficiency. Scientific Reports, 12, 10002. https://doi.org/10.1038/s41598-022-14163-4
Ferreira, L. M. dos S., do Vale, A. E., de Souza, A. J., Leite, K. B., Sacramento, C., Moreno, M. L. V., Araujo, T. H., Soares, M. B. P., & Grassi, M. F. R. (2019). Anatomical and phytochemical characterization of Physalis angulata L: A plant with therapeutic potential. Pharmacognosy Research, 11(2), 171–177. https://dx.doi.org/10.4103/pr.pr_97_18
Firdaus, A., Ashari, S., Khoiriyah, L. L., & Waluyo, B. (2022). Phenological of cutleaf groundcherry (Physalis angulata L.) based on BBCH scale. Jurnal Agronomi Tanaman Tropika, 4(2), 241–254. https://doi.org/10.36378/juatika.v4i2.2063
Gaurav, A. K., Singh, B., Jain, R., Janakiram, T., Swaroop, K., Singh, B., Jain, R., & Gopalakrishnan, S. (2014). Microclimate modification under different shade levels and its effect on the growth of Dracaena fragrans. Journal of Ornamental Horticulture, 17(1&2), 12–17. https://doi.org/10.5958/0974-0112.2016.00025.6
Gerardeaux, E., Jordan-Meille, L., Constantin, J., Pellerin, S., & Dingkuhn, M. (2010). Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.). Environmental and Experimental Botany, 67(3), 451–459. https://doi.org/10.1016/j.envexpbot.2009.09.008
Hasanuzzaman, M., Bhuyan, M. H. M. B., Nahar, K., Hossain, M. S., Al Mahmud, J., Hossen, M. S., Masud, A. A. C., Moumita, & Fujita, M. (2018). Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8(3), 31. https://doi.org/10.3390/agronomy8030031
Hemon, A. F., Sumarjan, & Hanafi, A. R. (2021). Shade stress in various growth phases of peanut genotypes and its effect on agronomic characters and chlorophyll content. IOP Conference Series: Earth and Environmental Science, 712, 012017. https://doi.org/10.1088/1755-1315/712/1/012017
Ilić, Z. S., Milenković, L., Šunić, L., Barać, S., Mastilović, J., Kevrešan, Ž., & Fallik, E. (2017). Effect of shading by coloured nets on yield and fruit quality of sweet pepper. Zemdirbyste-Agriculture, 104(1), 53–62. https://doi.org/10.13080/z-a.2017.104.008
Iwansyah, A. C., Julianti, W. P., & Luthfiyanti, R. (2019). Characterization of nutrition, antioxidant properties, and toxicity of Physalis angulata L. plant extract. Asian Journal of Pharmaceutical and Clinical Research, 12(11), 95–99. https://doi.org/10.22159/ajpcr.2019.v12i11.35497
Javaria, S., Khan, M. Q., & Bakash, I. (2012). Effect of potassium on chemical and sensory attributes of tomato fruit. The Journal of Animal & Plant Science, 22(4), 1081–1085. Retrieved from http://www.thejaps.org.pk/docs/V-22-4/44.pdf
Jiang, C. D., Wang, X., Gao, H. Y., Shi, L., & Chow, W. S. (2011). Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum. Plant Physiology, 155(3), 1416–1424. https://doi.org/10.1104/pp.111.172213
Jiang, C., Johkan, M., Hohjo, M., Tsukagoshi, S., & Maruo, T. (2017). A correlation analysis on chlorophyll content and SPAD value in tomato leaves. HortResearch, 71, 37–42. https://doi.org/10.20776/S18808824-71-P37
Kapoor, L., Simkin, A. J., George Priya Doss, C., & Siva, R. (2022). Fruit ripening: Dynamics and integrated analysis of carotenoids and anthocyanins. BMC Plant Biology, 22, 27. https://doi.org/10.1186/s12870-021-03411-w
Kesumawati, E., Apriyatna, D., & Rahmawati, M. (2020). The effect of shading levels and varieties on the growth and yield of chili plants (Capsicum annuum L.). IOP Conference Series: Earth and Environmental Science, 425, 012080. https://doi.org/10.1088/1755-1315/425/1/012080
Khalid, M. H. B., Raza, M. A., Yu, H. Q., Sun, F. A., Zhang, Y. Y., Lu, F. Z., Si, L., Iqbal, N., Khan, I., Fu, F. L., & Li, W. C. (2019). Effect of shade treatments on morphology, photosynthetic and chlorophyll fluorescence characteristic of soybean (Glycine max L. Merr.). Applied Ecology and Environmental Research, 17(2), 2551–2569. https://doi.org/10.15666/aeer/1702_25512569
Kläring, H. P., & Krumbein, A. (2013). The effect of constraining the intensity of solar radiation on the photosynthesis, growth, yield and product quality of tomato. Journal of Agronomy and Crop Science, 199(5), 351–359. https://doi.org/10.1111/jac.12018
Kostecka-Gugała, A., Ledwozyw-Smoleń, I., Augustynowicz, J., Wyzgolik, G., Kruczek, M., & Kaszycki, P. (2015). Antioxidant properties of fruits of raspberry and blackberry grown in central Europe. Open Chemistry, 13(1), 000010151520150143. https://doi.org/10.1515/chem-2015-0143
Kusumaningtyas, R., Laily, N., & Limandha, P. (2015). Potential of ciplukan (Physalis angulata L.) as source of functional ingredient. Procedia Chemistry, 14, 367–372. https://doi.org/10.1016/j.proche.2015.03.050
Li, A., Li, S., Wu, X., Zhang, J., He, A., Zhao, G., & Yang, X. (2016). Effect of light intensity on leaf photosynthetic characteristics and accumulation of flavonoids in Lithocarpus litseifolius (Hance) Chun. (Fagaceae). Open Journal of Forestry, 6, 445–459. https://doi.org/10.4236/ojf.2016.65034
Lima, M. da S., Evangelista, A. F., dos Santos, G. G. L., Ribeiro, I. M., Tomassini, T. C. B., Pereira Soares, M. B., & Villarreal, C. F. (2014). Antinociceptive properties of physalin from Physalis angulata. Journal of Natural Products, 77(11), 2397–2403. https://doi.org/10.1021/np5003093
Ma, Q., Cao, X., Wu, L., Mi, W., & Feng, Y. (2016). Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.). Scientific Reports, 6, 21200. https://doi.org/10.1038/srep21200
Masabni, J., Sun, Y., Niu, G., & Del Valle, P. (2016). Shade effect on growth and productivity of tomato and chili pepper. HortTechnology, 26(3), 344–350. https://doi.org/10.21273/horttech.26.3.344
Medina-Medrano, J. R., Almaraz-Abarca, N., Socorro González-Elizondo, M., Uribe-Soto, J. N., González-Valdez, L. S., & Herrera-Arrieta, Y. (2015). Phenolic constituents and antioxidant properties of five wild species of Physalis (Solanaceae). Botanical Studies, 56, 24. https://doi.org/10.1186/s40529-015-0101-y
Morales, I., Martínez-Gutiérrez, G. A., Escamirosa-Tinoco, C., Nájera, C., da Cunha-Chiamolera, T. P. L., & Urrestarazu, M. (2018). Production and quality of Physalis ixocarpa Brot. Fruit under colored shade netting. HortScience, 53(6), 823–828. https://doi.org/10.21273/HORTSCI13100-18
Muhidin, Syam’Un, E., Kaimuddin, Musa, Y., Sadimantara, G. R., Usman, Leomo, S., & Rakian, T. C. (2018). The effect of shade on chlorophyll and anthocyanin content of upland red rice. IOP Conference Series: Earth and Environmental Science, 122, 012030. https://doi.org/10.1088/1755-1315/122/1/012030
Nguyen, G. N., Lantzke, N., & van Burgel, A. (2022). Effects of shade nets on microclimatic conditions, growth, fruit yield, and quality of eggplant (Solanum melongena L.): A case study in Carnarvon, Western Australia. Horticulturae, 8(8), 696. https://doi.org/10.3390/horticulturae8080696
Oosterhuis, D. M., Loka, D. A., Kawakami, E. M., & Pettigrew, W. T. (2014). The physiology of potassium in crop production. Advances in Agronomy, 126, 203–233. https://doi.org/10.1016/B978-0-12-800132-5.00003-1
Rezai, S., Etemadi, N., Nikbakht, A., Yousefi, M., & Majidi, M. M. (2018). Effect of light intensity on leaf morphology, photosynthetic capacity, and chlorophyll content in sage (Salvia officinalis L.). Horticultural Science and Technology, 36(1), 46–57. https://doi.org/10.12972/kjhst.20180006
Setiawati, T., Ayalla, A., Nurzaman, M., & Mutaqin, A. Z. (2018). Influence of light intensity on leaf photosynthetic traits and alkaloid content of kiasahan (Tetracera scandens L.). IOP Conference Series: Earth and Environmental Science, 166, 012025. https://doi.org/10.1088/1755-1315/166/1/012025
Setyorini, D., Sugito, Y., Aini, N., & Tyasmoro, S. Y. (2018). Lycopene, beta-carotene and productivity of tomato varieties at different shade levels under medium land of Indonesia. Journal of Applied Horticulture, 20(2), 92–96. https://doi.org/10.37855/JAH.2018.V20I02.17
Shah, P., & Bora, K. S. (2019). Phytochemical and therapeutic potential of physalis species : A review. IOSR Journal of Pharmacy And Biological Sciences, 14(4), 34–51. https://doi.org/10.9790/3008-1404033451
Shao, Q., Wang, H., Guo, H., Zhou, A., Huang, Y., Sun, Y., & Li, M. (2014). Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii. PLoS ONE, 9(2), e0085996. https://doi.org/10.1371/journal.pone.0085996
Shezi, S., Magwaza, L. S., Tesfay, S. Z., & Mditshwa, A. (2020). Biochemical changes in response to canopy position of avocado fruit (cv. ‘Carmen’ and ‘Hass’) during growth and development and relationship with maturity. Scientia Horticulturae, 265, 109227. https://doi.org/10.1016/j.scienta.2020.109227
Sholehah, D. N., Hariyanto, S., & Purnobasuki, H. (2021). Fruit development of groundcherry (Physalis angulata L.) in dryland. Australian Journal of Crop Science, 15(8), 1186–1191. https://doi.org/10.21475/ajcs.21.15.08.p3318
Simkin, A. J., Kapoor, L., Doss, C. G. P., Hofmann, T. A., Lawson, T., & Ramamoorthy, S. (2022). The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynthesis Research, 152(1), 23–42. https://doi.org/10.1007/s11120-021-00892-6
Singh, V. K., Dwivedi, B. S., & Rathore, S. S. (2021). Timing potassium applications to synchronize with plant demand. Improving Potassium Recommendations for Agricultural Crops (pp. 363–384). Springer. https://doi.org/10.1007/978-3-030-59197-7
Sonntag, F., Bunzel, D., Kulling, S., Porath, I., Pach, F., Pawelzik, E., Smit, I., & Naumann, M. (2020). Effect of potassium fertilization on the concentration of antioxidants in two cocktail tomato cultivars. Journal of Applied Botany and Food Quality, 93, 34–43. https://doi.org/10.5073/JABFQ.2020.093.005
Sulistyowati, D., Chozin, M. A., Syukur, M., Melati, M., & Guntoro, D. (2016). Selection of shade-tolerant tomato genotypes. Journal of Applied Horticulture, 18(2), 154–159. https://doi.org/10.37855/jah.2016.v18i02.27
Sun, C. P., Qiu, C. Y., Zhao, F., Kang, N., Chen, L. X., & Qiu, F. (2017). Physalins V-IX, 16,24-cyclo-13,14-seco withanolides from Physalis angulata and their antiproliferative and anti-inflammatory activities. Scientific Reports, 7, 4057. https://doi.org/10.1038/s41598-017-03849-9
Tränkner, M., Tavakol, E., & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163(3), 414–431. https://doi.org/10.1111/ppl.12747
Wan, Y., Zhang, Y., Zhang, M., Hong, A., Yang, H. Y., & Liu, Y. (2020). Shade effects on growth, photosynthesis and chlorophyll fluorescence parameters of three Paeonia species. PeerJ, 8, e9316. https://doi.org/10.7717/peerj.9316
Woldemariam, S. H., Lal, S., Zelelew, D. Z., & Solomon, M. T. (2018). Effect of potassium levels on productivity and fruit quality of tomato (Lycopersicon esculentum L.). Journal of Agricultural Studies, 6(1), 104–117. https://doi.org/10.5296/jas.v6i1.12262
Wu, S., Zhang, C., Li, M., Tan, Q., Sun, X., Pan, Z., Deng, X., & Hu, C. (2021). Effects of potassium on fruit soluble sugar and citrate accumulations in Cara Cara navel orange (Citrus sinensis L. Osbeck). Scientia Horticulturae, 283, 110057. https://doi.org/10.1016/j.scienta.2021.110057
Wu, Y., Yang, H., Yang, H., Zhang, C., Lyu, L., Li, W., & Wu, W. (2022). A physiological and metabolomic analysis reveals the effect of shading intensity on blueberry fruit quality. Food Chemistry: X, 15, 100367. https://doi.org/10.1016/j.fochx.2022.100367
Xu, J., Guo, Z., Jiang, X., Ahammed, G. J., & Zhou, Y. (2021). Light regulation of horticultural crop nutrient uptake and utilization. Horticultural Plant Journal, 7(5), 367–379. https://doi.org/10.1016/J.HPJ.2021.01.005
Yasoda, P. G. C., Pradheeban, L., Nishanthan, K., & Sivachandiran, S. (2018). Effect of different shade levels on growth and yield performances of cauliflower. International Journal of Environment, Agriculture and Biotechnology, 3(3), 948–955. https://doi.org/10.22161/ijeab/3.3.30
Yusof, F. F. M., Yaacob, J. S., Osman, N., Ibrahim, M. H., Wan-Mohtar, W. A. A. Q. I., Berahim, Z., & Zain, N. A. M. (2021). Shading effects on leaf gas exchange, leaf pigments and secondary metabolites of Polygonum minus Huds., an aromatic medicinal herb. Plants, 10(3), 608. https://doi.org/10.3390/plants10030608
Zhang, N., Van Westreenen, A., Anten, N. P. R., Evers, J. B., & Marcelis, L. F. M. (2020). Disentangling the effects of photosynthetically active radiation and red to far-red ratio on plant photosynthesis under canopy shading: A simulation study using a functional-structural plant model. Annals of Botany, 126(4), 635–646. https://doi.org/10.1093/aob/mcz197
Zhang, W., Zhang, X., Wang, Y., Zhang, N., Guo, Y., Ren, X., & Zhao, Z. (2018). Potassium fertilization arrests malate accumulation and alters soluble sugar metabolism in apple fruit. Biology Open, 7(12), bio024745. https://doi.org/10.1242/bio.024745
Zhou, T., Wang, L., Li, S., Gao, Y., Du, Y., Zhao, L., Liu, W., & Yang, W. (2019). Interactions between light intensity and phosphorus nutrition affect the p uptake capacity of maize and soybean seedling in a low light intensity area. Frontiers in Plant Science, 10, 395063. https://doi.org/10.3389/fpls.2019.00183
Refbacks
- There are currently no refbacks.