Arthropod Community Structure Indicating Soil Quality Recovery in the Organic Agroecosystem of Mount Ciremai National Park’s Buffer Zone

Isma Dwi Kurniawan, Ida Kinasih, Rahmat Taufiq Mustahiq Akbar, Liberty Chaidir, Sawaludin Iqbal, Bayu Pamungkas, Zikri Imanudin

Abstract

The Mount Ciremai National Park (TNGC) buffer zone is designed to support conservation efforts. However, agriculture in this area is dominated by conventional farming that excessively uses synthetic fertilizers, which threatens soil quality. Introducing an organic fertilizer and plant growth-promoting rhizobacteria (PGPR) is expected to enhance soil quality recovery in this area. This study aimed to analyze the differences in soil arthropod communities between organic and conventional agriculture and a forest in the TNGC buffer zone to assess soil quality improvement generated by the application of the organic fertilizer and PGPR. Soil arthropods were collected with Berlese-Tullgren funnels and pitfall traps. Several associated environmental parameters, including soil pH, C-organic, temperature, and moisture, were also measured. Data were analyzed using ecological indices (i.e., richness, diversity, evenness, dominance, similarity) and soil biological quality (QBS-ar). Non-metric multidimensional scaling (NMDS) was performed to examine the relation of arthropods with environmental parameters. In total, 957 individuals of soil arthropods belonging to four classes and 15 orders were recorded. Berlese-Tullgren and pitfall traps resulted in a similar tendency in most variables, with higher richness, diversity, and evenness values in the forest, followed by organic and conventional habitats. In addition, similarity and QBS-ar indicated that forest and organic communities were more similar than conventional community. C-organic, soil moisture and pH were considered the most deciding environmental parameters for arthropod assemblages. All measured variables in this study illustrated better soil quality in organic than in conventional agriculture. This study implicates the benefit of utilizing organic fertilizers and PGPR for soil quality restoration in agroecosystems.

Keywords

conservation; ecological indices; organic fertilizers; PGPR; QBS-ar; soil communities

Full Text:

PDF

References

Arunachalam, V., Paramesha, V., Uthappa, A. R., & Kumar, P. (2022). Ecosystem service analysis: Concepts and applications in diversified coconut and arecanut gardens. Goa, India: ICAR-Central Coastal Agricultural Research Institute. Retrieved from https://www.researchgate.net/publication/362301891_Soil_arthropods_and_their_role_in_soil_health_sustenance

Bhagawati, S., Bhattacharyya, B., Medhi, B. K., Bhattacharjee, S., & Mishra, H. (2021). Diversity of soil dwelling collembola in a forest, vegetable and tea ecosystems of Assam, India. Sustainability, 13(22), 12628. https://doi.org/10.3390/su132212628

Calyecac-Cortero, H. G., Miranda-Rangel, A., & Jimenez-Morales, M. (2015). Collembola indicators of soil fertility. ECORFAN Journal-Republic of Nicaragua, 1(1), 12–18. Retrieved from https://www.ecorfan.org/republicofnicaragua/journal/ECORFAN%20Journal_Nicaragua%20V1%20N1_3.pdf

Das, S., Mohanty, S., Sahu, G., & Sarkar, S. (2020). Sustainable agriculture: A path towards better future. Food and Scientific Reports, 1(9), 22–25. Retrieved from https://www.researchgate.net/publication/344138243

Disi, J., Simmons, J., & Zebelo, S. (2019). Plant growth-promoting rhizobacteria-induced defense against insect herbivores. In D. K. Maheshwari & S. Dheeman (Eds.), Field Crops: Sustainable Management by PGPR. Sustainable Development and Biodiversity, 23. Springer, Cham. https://doi.org/10.1007/978-3-030-30926-8_14

dos Santos, L. A. O., Naranjo-Guevara, N., & Fernandes, O. A. (2017). Diversity and abundance of edaphic arthropods associated with conventional and organic sugarcane crops in Brazil. Florida Entomologist, 100(1), 134–144. https://doi.org/10.1653/024.100.0119

Fess, T. L., & Benedito, V. A. (2018). Organic versus conventional cropping sustainability: A comparative system analysis. Sustainability, 10(1), 272. https://doi.org/10.3390/su10010272

Frainer, A., Jabiol, J., Gessner, M. O., Bruder, A., Chauvet, E., & McKie, B. G. (2016). Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning. Oikos, 125(6), 861–871. https://doi.org/10.1111/oik.02687

Galli, L., Capurro, M., Menta, C., & Rellini, I. (2014). Is the QBS-ar index a good tool to detect the soil quality in Mediterranean areas? A cork tree Quercus suber L. (Fagaceae) wood as a case of study. Italian Journal of Zoology, 81(1), 126–135. https://doi.org/10.1080/11250003.2013.875601

Ghiglieno, I., Simonetto, A., Orlando, F., Donna, P., Tonni, M., Valenti, L., & Gilioli, G. (2020). Response of the arthropod community to soil characteristics and management in the franciacorta viticultural area (Lombardy, Italy). Agronomy, 10(5), 740. https://doi.org/10.3390/agronomy10050740

Ghiglieno, I., Simonetto, A., Sperandio, G., Ventura, M., Gatti, F., Donna, P., Tonni, M., Valenti, L., & Gilioli, G. (2021). Impact of environmental conditions and management on soil arthropod communities in vineyard ecosystems. Sustainability, 13(21), 11999. https://doi.org/10.3390/su132111999

Gibb, T. J., & Oseto, C. Y. (2005). Arthropod collection and identification: Laboratory and field techniques. United State: Academic Press. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=y1gq2EraKIQC&oi=fnd&pg=PA1931&dq=Arthropod+Collection+and+Identification:+Laboratory+and+Field+Techniques&ots=mU9jHJyfCx&sig=73JoD0iVkl3IGZ-G__G4vuVdlBA&redir_esc=y#v=onepage&q=Arthropod%20Collection%20and%20Identification%3A%20Laboratory%20and%20Field%20Techniques&f=false

Gkisakis, V. D., Kollaros, D., Bàrberi, P., Livieratos, I. C., & Kabourakis, E. M. (2015). Soil arthropod diversity in organic, integrated, and conventional olive orchards and different agroecological zones in Crete, Greece. Agroecology and Sustainable Food Systems, 39(3), 276–294. https://doi.org/10.1080/21683565.2014.967440

Gonalves, M. F., & Pereira, J. A. (2012). Abundance and diversity of soil arthropods in the olive grove ecosystem. Journal of Insect Science, 12, 20. https://doi.org/10.1673/031.012.2001

He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2–3), 125–140. https://doi.org/10.1016/j.jtemb.2005.02.010

Hernández-Gutiérrez, E., Osten, J. R. Von, Escalona-Segura, G., Mendoza-Vega, J., Dzul-Caamal, R., Posthumus, S., Vastenhouw, R., Yang, X., Geissen, V., & Huerta-Lwanga, E. (2021). Morphospecies abundance of above-ground invertebrates in agricultural systems under glyphosate and microplastics in south-eastern Mexico. Environments, 8(11), 130. https://doi.org/10.3390/environments8110130

Himuro, C., Kohama, T., Matsuyama, T., Sadoyama, Y., Kawamura, F., Honma, A., Ikegawa, Y., & Haraguchi, D. (2022a). First case of successful eradication of the sweet potato weevil, Cylas formicarius (Fabricius), using the sterile insect technique. PLoS ONE, 17(5), e0267728. https://doi.org/10.1371/journal.pone.0267728

Himuro, C., Misa, K., Honma, A., Ikegawa, Y., Ohishi, T., & Kumano, N. (2022b). Effects of larval diet on the male reproductive traits in the west indian sweet potato weevils Euscepes postfasciatus (Coleoptera: Curculionidae). Insects, 13, 389. https://doi.org/10.3390/insects13040389

Horváth, A., Csáki, P., Szita, R., Kalicz, P., Gribovszki, Z., Bidló, A., Bolodár-Varga, B., Balázs, P., & Winkler, D. (2021). A complex soil ecological approach in a sustainable urban environment: Soil properties and soil biological quality. Minerals, 11(7), 704. https://doi.org/10.3390/min11070704

Inagaki, H., Yuto, S., & Daiki, Y. (2022). The effects of different undergrowth vegetation on the types and densities of functional ground-dwelling arthropods in citrus orchards. Caraka Tani: Journal of Sustainable Agriculture, 37(1), 62–70. https://doi.org/10.20961/carakatani.v37i1.56991

Kinasih, I., Cahyanto, T., Widiana, A., Kurnia, D. N. I., Julita, U., & Putra, R. E. (2016). Soil invertebrate diversity in coffee-pine agroforestry system at Sumedang, West Java. Biodiversitas, 17(2), 473–478. https://doi.org/10.13057/biodiv/d170211

Krause, A., Sandmann, D., Potapov, A., Ermilov, S., Widyastuti, R., Haneda, N. F., Scheu, S., & Maraun, M. (2021). Variation in community-level trophic niches of soil microarthropods with conversion of tropical rainforest into plantation systems as indicated by stable isotopes (15N, 13C). Frontiers in Ecology and Evolution, 9, 592149. https://doi.org/10.3389/fevo.2021.592149

Kurniawan, I. D., Rahmadi, C., Caraka, R. E., Rahman, I. M., Kinasih, I., Toharudin, T., Chen, R. C., & Lee, Y. (2020). Correspondence between bats population and terrestrial cave-dwelling arthropods community in Tasikmalaya karst area. Communications in Mathematical Biology and Neuroscience, 59, 4830. https://doi.org/https://doi.org/10.28919/cmbn/4830

Kurniawan, I. D., Soesilohadi, R. C. H., Rahmadi, C., Caraka, R. E., & Pardamean, B. (2018). The difference on arthropod communities’ structure within show caves and wild caves in Gunungsewu karst area, Indonesia. Ecology, Environment and Conservation, 24(1), 72–81. Retrieved from http://www.envirobiotechjournals.com/article_abstract.php?aid=8556&iid=247&jid=3

Langraf, V., Petrovičová, K., Schlarmannová, J., & Chovancová, Z. (2022). Changes in the community structure of epigeic arthropods in the conditions of ecological farming of pea (Pisum sativum L.). Chilean Journal of Agricultural Research, 82(4), 527–536. https://doi.org/10.4067/S0718-58392022000400527

Langraf, V., Petrovičová, K., Schlarmannová, J., David, S., Avtaeva, T. A., & Brygadyrenko, V. V. (2021). Assessment of soil quality in agroecosystems based on soil fauna. Biosystems Diversity, 29(4), 319–325. https://doi.org/10.15421/012140

Leksono, A., Putri, N., Gama, Z., Yanuwiyadi, B., & Zairina, A. (2019). Soil arthropod diversity and composition inhabited various habitats in Universitas Brawijaya Forest in Malang East Java Indonesia. Journal of Tropical Life Science, 9(1), 15–22. https://doi.org/10.11594/jtls.09.01.03

Li, Y., Li, Z., Arafat, Y., Lin, W., Jiang, Y., Weng, B., & Lin, W. (2017). Characterizing rhizosphere microbial communities in long-term monoculture tea orchards by fatty acid profiles and substrate utilization. European Journal of Soil Biology, 81, 48–54. https://doi.org/10.1016/j.ejsobi.2017.06.008

Lin, W., Lin, M., Zhou, H., Wu, H., Li, Z., & Lin, W. (2019). The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE, 14(5), e0217018. https://doi.org/10.1371/journal.pone.0217018

Lu, S. S., Huang, S. H., Bordbar, L., & Sung, I. H. (2019). Composition and diversity of ground-dwelling arthropods at Chiayi Agricultural long-term ecological research site in the Southern Taiwan. Journal of Asia-Pacific Biodiversity, 12, 561–569. https://doi.org/10.1016/j.japb.2019.05.004

Majeed, M. Z., Sarwar, I., Afzal, M., Khalid, M. R., Yahya, M., & Shehzad, K. (2019). Differential composition of edaphic arthropods in different landuse types of District Sargodha (Punjab, Pakistan) and their relationship with soil physico-chemical and biological characteristics. Sarhad Journal of Agriculture, 35(4), 1071–1083. https://doi.org/10.17582/journal.sja/2019/35.4.1071.1083

Mantoni, C., Pellegrini, M., Dapporto, L., Del Gallo, M. M., Pace, L., Silveri, D., & Fattorini, S. (2021). Comparison of soil biology quality in organically and conventionally managed agro-ecosystems using microarthropods. Agriculture, 11, 1022. https://doi.org/10.3390/agriculture11101022

Marja, R., Tscharntke, T., & Batáry, P. (2022). Increasing landscape complexity enhances species richness of farmland arthropods, agri-environment schemes also abundance–A meta-analysis. Agriculture, Ecosystems and Environment, 326, 107822. https://doi.org/10.1016/j.agee.2021.107822

Menta, C., Conti, F. D., Fondón, C. L., Staffilani, F., & Remelli, S. (2020). Soil arthropod responses in agroecosystem: Implications of different management and cropping systems. Agronomy, 10(7), 982. https://doi.org/10.3390/agronomy10070982

Menta, C., Conti, F. D., Pinto, S., & Bodini, A. (2018). Soil biological quality index (QBS-ar): 15 years of application at global scale. Ecological Indicators, 85, 773–780. https://doi.org/10.1016/j.ecolind.2017.11.030

Menta, C., & Remelli, S. (2020). Soil health and arthropods: From complex system to worthwhile investigation. Insects, 11, 54. https://doi.org/10.3390/insects11010054

Mo, L., Xu, G., Zhang, J., Wu, Z., Yu, S., Chen, X., Peng, B., Squartini, A., & Zanella, A. (2021). Threshold reaction of soil arthropods to simulative nitrogen deposition in urban green spaces. Frontiers in Ecology and Evolution, 9, 711774. https://doi.org/10.3389/fevo.2021.711774

Muhtadi, A., Yulianda, F., Boer, M., Krisanti, M., & Desrita. (2023). Ichthyofauna diversity and its distribution in a low-saline lake of Indonesia. HAYATI Journal of Biosciences, 30(3), 421–431. https://doi.org/10.4308/hjb.30.3.421-431

Nsengimana, V., Kaplin, B. A., Francis, F., & Nsabimana, D. (2018). Use of soil and litter arthropods as biological indicators of soil uality in forest plantationsand agricultural lands: A review. Entomologie Fauistique. Faunistic Entomology, 71, 1–12. Retrieved from http://dr.ur.ac.rw/handle/123456789/339

Okereafor, U., Makhatha, M., Mekuto, L., Uche-Okereafor, N., Sebola, T., & Mavumengwana, V. (2020). Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. International Journal of Environmental Research and Public Health, 17, 2204. https://doi.org/10.3390/ijerph17072204

Okpiliya, F. I. (2012). Ecological diversity indices : Any hope for one again ? Journal of Environment and Earth Science, 2(10), 45–52. Retrieved from https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Ecological+diversity+indices%E2%80%AF%3A+Any+hope+for+one+again%E2%80%AF%3F&btnG=

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2020). Package ‘vegan’. Community ecology package, version, 1–295. Retrieved from https://cran.r-project.org/web/packages/vegan/vegan.pdf

Oliver, I., & Beattie, A. J. (1996). Invertebrate morphospecies as surrogates for species: A case study. Conservation Biology, 10(1), 99–109. https://doi.org/10.1046/j.1523-1739.1996.10010099.x

Ostandie, N., Giffard, B., Bonnard, O., Joubard, B., Richart-Cervera, S., Thiéry, D., & Rusch, A. (2021). Multi-community effects of organic and conventional farming practices in vineyards. Scientific Reports, 11, 11979. https://doi.org/10.1038/s41598-021-91095-5

Parisi, V., Menta, C., Gardi, C., Jacomini, C., & Mozzanica, E. (2005). Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agriculture, Ecosystems and Environment, 105, 323–333. https://doi.org/10.1016/j.agee.2004.02.002

Paudel, A., & Tiwari, S. (2022). Abundance and diversity of soil arthropods in different habitats in Chitwan Nepal. Journal of the Plant Protection Society, 7(1), 1–10. https://doi.org/10.3126/jpps.v7i01.47299

Ponge, J. F., Gillet, S., Dubs, F., Fedoroff, E., Haese, L., Sousa, J. P., & Lavelle, P. (2003). Collembolan communities as bioindicators of land use intensification. Soil Biology and Biochemistry, 35(6), 813–826. https://doi.org/10.1016/S0038-0717(03)00108-1

Potapov, A. M., Goncharov, A. A., Semenina, E. E., Korotkevich, A. Y., Tsurikov, S. M., Rozanova, O. L., Anichkin, A. E., Zuev, A. G., Samoylova, E. S., Semenyuk, I. I., Yevdokimov, I. V., & Tiunov, A. V. (2017). Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. European Journal of Soil Biology, 82, 88–97. https://doi.org/10.1016/j.ejsobi.2017.09.001

Prather, R. M., Castillioni, K., Welti, E. A. R., Kaspari, M., & Souza, L. (2020). Abiotic factors and plant biomass, not plant diversity, strongly shape grassland arthropods under drought conditions. Ecology, 101(6), e03033. https://doi.org/10.1002/ecy.3033

Rahman, P. M., Varma, R. V., & Sileshi, G. W. (2012). Abundance and diversity of soil invertebrates in annual crops, agroforestry and forest ecosystems in the Nilgiri biosphere reserve of Western Ghats, India. Agroforestry Systems, 85(1), 165–177. https://doi.org/10.1007/s10457-011-9386-3

Reddy, B. T., & Giraddi, R. S. (2019). Diversity studies on insect communities in organic, conservation and conventional farming systems under rain-fed conditions. Journal of Entomology and Zoology Studies, 7(3), 883–886. Retrieved from https://www.entomoljournal.com/archives/2019/vol7issue3/PartO/7-3-164-138.pdf

Reddy, G. V. P., Zhao, Z., & Humber, R. A. (2014). Laboratory and field efficacy of entomopathogenic fungi for the management of the sweetpotato weevil, Cylas formicarius (Coleoptera: Brentidae). Journal of Invertebrate Pathology, 122, 10–15. https://doi.org/10.1016/j.jip.2014.07.009

Reid, C. A. M., & Storey, R. I. (1993). Redescription of adult and larva of Colasposoma sellatum Baly (Coleoptera: Chrysomelidae: Eumolpinae): a pest of sweet potato in Australia. Journal of Natural History, 27(3), 669–681. https://doi.org/10.1080/00222939300770391

Schuster, N. R., Peterson, J. A., Gilley, J. E., Schott, L. R., & Schmidt, A. M. (2019). Soil arthropod abundance and diversity following land application of swine slurry. Agricultural Sciences, 10(2), 150–163. https://doi.org/10.4236/as.2019.102013

Sharma, N., & Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: A review. International Journal of Agriculture, Environment and Biotechnology, 10(6), 675. https://doi.org/10.5958/2230-732x.2017.00083.3

Simoni, S., Nannelli, R., Castagnoli, M., Goggioli, D., Moschini, V., Vazzana, C., Benedettelli, S., & Migliorini, P. (2013). Abundance and biodiversity of soil arthropods in one conventional and two organic fields of maize in stockless arable systems. Redia, 96, 37–44. Retrieved from https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1237fdad19d79dc1ee11f4a41cd7973912b5bada

Suhardjono, Y. R., Deharveng, L., & Bedos, A. (2012). Collembola (ekor pegas): Biologi, klasifikasi, ekologi. Bogor: PT Vega Briantama Vandanesia. Retrieved from https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Collembola+%28Ekor+Pegas%29%E2%80%AF%3A+Biologi%2C+Ekologi%2C+Klasifikasi+Suhardjono&btnG=

Supriyadi, S., Vera, I. L. P., & Purwanto. (2021). Soil quality at rice fields with organic, semi-organic and inorganic management in Wonogiri Regency, Indonesia. Caraka Tani: Journal of Sustainable Agriculture, 36(2), 259–269. https://doi.org/10.20961/carakatani.v36i2.42556

Tanzubil, P. B. (2015). Insect pests of sweet potato in the Sudan savanna zone of Ghana. Journal of Entomology and Zoology Studies, 3(2), 124–126. Retrieved from https://www.entomoljournal.com/archives/2015/vol3issue2/PartC/3-2-61.pdf

Thorat, J. C., & More, A. L. (2022). The effect of chemical fertilizers on environment and human health. International Journal of Scientific Development and Research (IJSDR), 7(2), 99–105. Retrieved from http://www.ijsdr.org/papers/IJSDR2202016.pdf

Triplehorn, C. A., & Johnson, N. F. (2005). Borror and DeLong’s introduction to the study of insects (7th ed.). Belmont, California: Thomson Brooks/Cole. Retrieved from https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Borror+and+DeLong%E2%80%99s+Introduction+to+the+Study+of+Insects+&btnG=

Tsutsui, M. H., Kobayashi, K., & Miyashita, T. (2018). Temporal trends in arthropod abundances after the transition to organic farming in paddy fields. PLoS ONE, 13(1), e0190946. https://doi.org/10.1371/journal.pone.0190946

Wheater, C. P., Bell, J. R., & Cook, P. A. (2011). Practical field ecology: A project guide. New Jersey, United State: John Wiley & Sons Ltd. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=wDXnDwAAQBAJ&oi=fnd&pg=PR15&dq=Practical+Field+Ecology:+A+Project+Guide&ots=0hP36wrpjQ&sig=FbOsbGAtpB7-j5Dee5Z3u-ay3h4&redir_esc=y#v=onepage&q=Practical%20Field%20Ecology%3A%20A%20Project%20Guide&f=false

Winkler, D., & Traser, G. (2012). Collembola diversity in agricultural environments (Lajta Project, Western Hungary). International Scientific Conference on Sustainable Development & Ecological Footprint, pp. 1–5. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Collembola+Diversity+in+Agricultural+Environments+(+Lajta+Project+,+Western+Hungary+)#0

Yahyapour, E., Vafaei-Shoushtari, R., Shayanmehr, M., & Arbea, J. (2018). A survey on Entomobryomorpha (Collembola) fauna in northern forests of Iran. Journal of Insect Biodiversity and Systematics, 4(4), 307–316. Retrieved from https://www.biotaxa.org/jibs/article/view/74157

Yin, W. (1998). Pictorical keys to soil animals of China. Beijing, Tiongkok: Science press. Retrieved from https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Pictorial+Keys+to+Soil+Animals+of+China+Wenying&btnG=

Zhang, Q.-C., Shamsi, I. H., Xu, D.-T., Wang, G.-H., Lin, X.-Y., Jilani, G., Hussain, N., & Chaudhry, A. N. (2012). Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Applied Soil Ecology, 57, 1–8. https://doi.org/10.1016/j.apsoil.2012.02.012

Refbacks

  • There are currently no refbacks.