Arthropod Community Structure Indicating Soil Quality Recovery in the Organic Agroecosystem of Mount Ciremai National Park’s Buffer Zone
Abstract
Keywords
Full Text:
PDFReferences
Arunachalam, V., Paramesha, V., Uthappa, A. R., & Kumar, P. (2022). Ecosystem service analysis: Concepts and applications in diversified coconut and arecanut gardens. Goa, India: ICAR-Central Coastal Agricultural Research Institute. Retrieved from https://www.researchgate.net/publication/362301891_Soil_arthropods_and_their_role_in_soil_health_sustenance
Bhagawati, S., Bhattacharyya, B., Medhi, B. K., Bhattacharjee, S., & Mishra, H. (2021). Diversity of soil dwelling collembola in a forest, vegetable and tea ecosystems of Assam, India. Sustainability, 13(22), 12628. https://doi.org/10.3390/su132212628
Calyecac-Cortero, H. G., Miranda-Rangel, A., & Jimenez-Morales, M. (2015). Collembola indicators of soil fertility. ECORFAN Journal-Republic of Nicaragua, 1(1), 12–18. Retrieved from https://www.ecorfan.org/republicofnicaragua/journal/ECORFAN%20Journal_Nicaragua%20V1%20N1_3.pdf
Das, S., Mohanty, S., Sahu, G., & Sarkar, S. (2020). Sustainable agriculture: A path towards better future. Food and Scientific Reports, 1(9), 22–25. Retrieved from https://www.researchgate.net/publication/344138243
Disi, J., Simmons, J., & Zebelo, S. (2019). Plant growth-promoting rhizobacteria-induced defense against insect herbivores. In D. K. Maheshwari & S. Dheeman (Eds.), Field Crops: Sustainable Management by PGPR. Sustainable Development and Biodiversity, 23. Springer, Cham. https://doi.org/10.1007/978-3-030-30926-8_14
dos Santos, L. A. O., Naranjo-Guevara, N., & Fernandes, O. A. (2017). Diversity and abundance of edaphic arthropods associated with conventional and organic sugarcane crops in Brazil. Florida Entomologist, 100(1), 134–144. https://doi.org/10.1653/024.100.0119
Fess, T. L., & Benedito, V. A. (2018). Organic versus conventional cropping sustainability: A comparative system analysis. Sustainability, 10(1), 272. https://doi.org/10.3390/su10010272
Frainer, A., Jabiol, J., Gessner, M. O., Bruder, A., Chauvet, E., & McKie, B. G. (2016). Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning. Oikos, 125(6), 861–871. https://doi.org/10.1111/oik.02687
Galli, L., Capurro, M., Menta, C., & Rellini, I. (2014). Is the QBS-ar index a good tool to detect the soil quality in Mediterranean areas? A cork tree Quercus suber L. (Fagaceae) wood as a case of study. Italian Journal of Zoology, 81(1), 126–135. https://doi.org/10.1080/11250003.2013.875601
Ghiglieno, I., Simonetto, A., Orlando, F., Donna, P., Tonni, M., Valenti, L., & Gilioli, G. (2020). Response of the arthropod community to soil characteristics and management in the franciacorta viticultural area (Lombardy, Italy). Agronomy, 10(5), 740. https://doi.org/10.3390/agronomy10050740
Ghiglieno, I., Simonetto, A., Sperandio, G., Ventura, M., Gatti, F., Donna, P., Tonni, M., Valenti, L., & Gilioli, G. (2021). Impact of environmental conditions and management on soil arthropod communities in vineyard ecosystems. Sustainability, 13(21), 11999. https://doi.org/10.3390/su132111999
Gibb, T. J., & Oseto, C. Y. (2005). Arthropod collection and identification: Laboratory and field techniques. United State: Academic Press. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=y1gq2EraKIQC&oi=fnd&pg=PA1931&dq=Arthropod+Collection+and+Identification:+Laboratory+and+Field+Techniques&ots=mU9jHJyfCx&sig=73JoD0iVkl3IGZ-G__G4vuVdlBA&redir_esc=y#v=onepage&q=Arthropod%20Collection%20and%20Identification%3A%20Laboratory%20and%20Field%20Techniques&f=false
Gkisakis, V. D., Kollaros, D., Bàrberi, P., Livieratos, I. C., & Kabourakis, E. M. (2015). Soil arthropod diversity in organic, integrated, and conventional olive orchards and different agroecological zones in Crete, Greece. Agroecology and Sustainable Food Systems, 39(3), 276–294. https://doi.org/10.1080/21683565.2014.967440
Gonalves, M. F., & Pereira, J. A. (2012). Abundance and diversity of soil arthropods in the olive grove ecosystem. Journal of Insect Science, 12, 20. https://doi.org/10.1673/031.012.2001
He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2–3), 125–140. https://doi.org/10.1016/j.jtemb.2005.02.010
Hernández-Gutiérrez, E., Osten, J. R. Von, Escalona-Segura, G., Mendoza-Vega, J., Dzul-Caamal, R., Posthumus, S., Vastenhouw, R., Yang, X., Geissen, V., & Huerta-Lwanga, E. (2021). Morphospecies abundance of above-ground invertebrates in agricultural systems under glyphosate and microplastics in south-eastern Mexico. Environments, 8(11), 130. https://doi.org/10.3390/environments8110130
Himuro, C., Kohama, T., Matsuyama, T., Sadoyama, Y., Kawamura, F., Honma, A., Ikegawa, Y., & Haraguchi, D. (2022a). First case of successful eradication of the sweet potato weevil, Cylas formicarius (Fabricius), using the sterile insect technique. PLoS ONE, 17(5), e0267728. https://doi.org/10.1371/journal.pone.0267728
Himuro, C., Misa, K., Honma, A., Ikegawa, Y., Ohishi, T., & Kumano, N. (2022b). Effects of larval diet on the male reproductive traits in the west indian sweet potato weevils Euscepes postfasciatus (Coleoptera: Curculionidae). Insects, 13, 389. https://doi.org/10.3390/insects13040389
Horváth, A., Csáki, P., Szita, R., Kalicz, P., Gribovszki, Z., Bidló, A., Bolodár-Varga, B., Balázs, P., & Winkler, D. (2021). A complex soil ecological approach in a sustainable urban environment: Soil properties and soil biological quality. Minerals, 11(7), 704. https://doi.org/10.3390/min11070704
Inagaki, H., Yuto, S., & Daiki, Y. (2022). The effects of different undergrowth vegetation on the types and densities of functional ground-dwelling arthropods in citrus orchards. Caraka Tani: Journal of Sustainable Agriculture, 37(1), 62–70. https://doi.org/10.20961/carakatani.v37i1.56991
Kinasih, I., Cahyanto, T., Widiana, A., Kurnia, D. N. I., Julita, U., & Putra, R. E. (2016). Soil invertebrate diversity in coffee-pine agroforestry system at Sumedang, West Java. Biodiversitas, 17(2), 473–478. https://doi.org/10.13057/biodiv/d170211
Krause, A., Sandmann, D., Potapov, A., Ermilov, S., Widyastuti, R., Haneda, N. F., Scheu, S., & Maraun, M. (2021). Variation in community-level trophic niches of soil microarthropods with conversion of tropical rainforest into plantation systems as indicated by stable isotopes (15N, 13C). Frontiers in Ecology and Evolution, 9, 592149. https://doi.org/10.3389/fevo.2021.592149
Kurniawan, I. D., Rahmadi, C., Caraka, R. E., Rahman, I. M., Kinasih, I., Toharudin, T., Chen, R. C., & Lee, Y. (2020). Correspondence between bats population and terrestrial cave-dwelling arthropods community in Tasikmalaya karst area. Communications in Mathematical Biology and Neuroscience, 59, 4830. https://doi.org/https://doi.org/10.28919/cmbn/4830
Kurniawan, I. D., Soesilohadi, R. C. H., Rahmadi, C., Caraka, R. E., & Pardamean, B. (2018). The difference on arthropod communities’ structure within show caves and wild caves in Gunungsewu karst area, Indonesia. Ecology, Environment and Conservation, 24(1), 72–81. Retrieved from http://www.envirobiotechjournals.com/article_abstract.php?aid=8556&iid=247&jid=3
Langraf, V., Petrovičová, K., Schlarmannová, J., & Chovancová, Z. (2022). Changes in the community structure of epigeic arthropods in the conditions of ecological farming of pea (Pisum sativum L.). Chilean Journal of Agricultural Research, 82(4), 527–536. https://doi.org/10.4067/S0718-58392022000400527
Langraf, V., Petrovičová, K., Schlarmannová, J., David, S., Avtaeva, T. A., & Brygadyrenko, V. V. (2021). Assessment of soil quality in agroecosystems based on soil fauna. Biosystems Diversity, 29(4), 319–325. https://doi.org/10.15421/012140
Leksono, A., Putri, N., Gama, Z., Yanuwiyadi, B., & Zairina, A. (2019). Soil arthropod diversity and composition inhabited various habitats in Universitas Brawijaya Forest in Malang East Java Indonesia. Journal of Tropical Life Science, 9(1), 15–22. https://doi.org/10.11594/jtls.09.01.03
Li, Y., Li, Z., Arafat, Y., Lin, W., Jiang, Y., Weng, B., & Lin, W. (2017). Characterizing rhizosphere microbial communities in long-term monoculture tea orchards by fatty acid profiles and substrate utilization. European Journal of Soil Biology, 81, 48–54. https://doi.org/10.1016/j.ejsobi.2017.06.008
Lin, W., Lin, M., Zhou, H., Wu, H., Li, Z., & Lin, W. (2019). The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE, 14(5), e0217018. https://doi.org/10.1371/journal.pone.0217018
Lu, S. S., Huang, S. H., Bordbar, L., & Sung, I. H. (2019). Composition and diversity of ground-dwelling arthropods at Chiayi Agricultural long-term ecological research site in the Southern Taiwan. Journal of Asia-Pacific Biodiversity, 12, 561–569. https://doi.org/10.1016/j.japb.2019.05.004
Majeed, M. Z., Sarwar, I., Afzal, M., Khalid, M. R., Yahya, M., & Shehzad, K. (2019). Differential composition of edaphic arthropods in different landuse types of District Sargodha (Punjab, Pakistan) and their relationship with soil physico-chemical and biological characteristics. Sarhad Journal of Agriculture, 35(4), 1071–1083. https://doi.org/10.17582/journal.sja/2019/35.4.1071.1083
Mantoni, C., Pellegrini, M., Dapporto, L., Del Gallo, M. M., Pace, L., Silveri, D., & Fattorini, S. (2021). Comparison of soil biology quality in organically and conventionally managed agro-ecosystems using microarthropods. Agriculture, 11, 1022. https://doi.org/10.3390/agriculture11101022
Marja, R., Tscharntke, T., & Batáry, P. (2022). Increasing landscape complexity enhances species richness of farmland arthropods, agri-environment schemes also abundance–A meta-analysis. Agriculture, Ecosystems and Environment, 326, 107822. https://doi.org/10.1016/j.agee.2021.107822
Menta, C., Conti, F. D., Fondón, C. L., Staffilani, F., & Remelli, S. (2020). Soil arthropod responses in agroecosystem: Implications of different management and cropping systems. Agronomy, 10(7), 982. https://doi.org/10.3390/agronomy10070982
Menta, C., Conti, F. D., Pinto, S., & Bodini, A. (2018). Soil biological quality index (QBS-ar): 15 years of application at global scale. Ecological Indicators, 85, 773–780. https://doi.org/10.1016/j.ecolind.2017.11.030
Menta, C., & Remelli, S. (2020). Soil health and arthropods: From complex system to worthwhile investigation. Insects, 11, 54. https://doi.org/10.3390/insects11010054
Mo, L., Xu, G., Zhang, J., Wu, Z., Yu, S., Chen, X., Peng, B., Squartini, A., & Zanella, A. (2021). Threshold reaction of soil arthropods to simulative nitrogen deposition in urban green spaces. Frontiers in Ecology and Evolution, 9, 711774. https://doi.org/10.3389/fevo.2021.711774
Muhtadi, A., Yulianda, F., Boer, M., Krisanti, M., & Desrita. (2023). Ichthyofauna diversity and its distribution in a low-saline lake of Indonesia. HAYATI Journal of Biosciences, 30(3), 421–431. https://doi.org/10.4308/hjb.30.3.421-431
Nsengimana, V., Kaplin, B. A., Francis, F., & Nsabimana, D. (2018). Use of soil and litter arthropods as biological indicators of soil uality in forest plantationsand agricultural lands: A review. Entomologie Fauistique. Faunistic Entomology, 71, 1–12. Retrieved from http://dr.ur.ac.rw/handle/123456789/339
Okereafor, U., Makhatha, M., Mekuto, L., Uche-Okereafor, N., Sebola, T., & Mavumengwana, V. (2020). Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. International Journal of Environmental Research and Public Health, 17, 2204. https://doi.org/10.3390/ijerph17072204
Okpiliya, F. I. (2012). Ecological diversity indices : Any hope for one again ? Journal of Environment and Earth Science, 2(10), 45–52. Retrieved from https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Ecological+diversity+indices%E2%80%AF%3A+Any+hope+for+one+again%E2%80%AF%3F&btnG=
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2020). Package ‘vegan’. Community ecology package, version, 1–295. Retrieved from https://cran.r-project.org/web/packages/vegan/vegan.pdf
Oliver, I., & Beattie, A. J. (1996). Invertebrate morphospecies as surrogates for species: A case study. Conservation Biology, 10(1), 99–109. https://doi.org/10.1046/j.1523-1739.1996.10010099.x
Ostandie, N., Giffard, B., Bonnard, O., Joubard, B., Richart-Cervera, S., Thiéry, D., & Rusch, A. (2021). Multi-community effects of organic and conventional farming practices in vineyards. Scientific Reports, 11, 11979. https://doi.org/10.1038/s41598-021-91095-5
Parisi, V., Menta, C., Gardi, C., Jacomini, C., & Mozzanica, E. (2005). Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agriculture, Ecosystems and Environment, 105, 323–333. https://doi.org/10.1016/j.agee.2004.02.002
Paudel, A., & Tiwari, S. (2022). Abundance and diversity of soil arthropods in different habitats in Chitwan Nepal. Journal of the Plant Protection Society, 7(1), 1–10. https://doi.org/10.3126/jpps.v7i01.47299
Ponge, J. F., Gillet, S., Dubs, F., Fedoroff, E., Haese, L., Sousa, J. P., & Lavelle, P. (2003). Collembolan communities as bioindicators of land use intensification. Soil Biology and Biochemistry, 35(6), 813–826. https://doi.org/10.1016/S0038-0717(03)00108-1
Potapov, A. M., Goncharov, A. A., Semenina, E. E., Korotkevich, A. Y., Tsurikov, S. M., Rozanova, O. L., Anichkin, A. E., Zuev, A. G., Samoylova, E. S., Semenyuk, I. I., Yevdokimov, I. V., & Tiunov, A. V. (2017). Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. European Journal of Soil Biology, 82, 88–97. https://doi.org/10.1016/j.ejsobi.2017.09.001
Prather, R. M., Castillioni, K., Welti, E. A. R., Kaspari, M., & Souza, L. (2020). Abiotic factors and plant biomass, not plant diversity, strongly shape grassland arthropods under drought conditions. Ecology, 101(6), e03033. https://doi.org/10.1002/ecy.3033
Rahman, P. M., Varma, R. V., & Sileshi, G. W. (2012). Abundance and diversity of soil invertebrates in annual crops, agroforestry and forest ecosystems in the Nilgiri biosphere reserve of Western Ghats, India. Agroforestry Systems, 85(1), 165–177. https://doi.org/10.1007/s10457-011-9386-3
Reddy, B. T., & Giraddi, R. S. (2019). Diversity studies on insect communities in organic, conservation and conventional farming systems under rain-fed conditions. Journal of Entomology and Zoology Studies, 7(3), 883–886. Retrieved from https://www.entomoljournal.com/archives/2019/vol7issue3/PartO/7-3-164-138.pdf
Reddy, G. V. P., Zhao, Z., & Humber, R. A. (2014). Laboratory and field efficacy of entomopathogenic fungi for the management of the sweetpotato weevil, Cylas formicarius (Coleoptera: Brentidae). Journal of Invertebrate Pathology, 122, 10–15. https://doi.org/10.1016/j.jip.2014.07.009
Reid, C. A. M., & Storey, R. I. (1993). Redescription of adult and larva of Colasposoma sellatum Baly (Coleoptera: Chrysomelidae: Eumolpinae): a pest of sweet potato in Australia. Journal of Natural History, 27(3), 669–681. https://doi.org/10.1080/00222939300770391
Schuster, N. R., Peterson, J. A., Gilley, J. E., Schott, L. R., & Schmidt, A. M. (2019). Soil arthropod abundance and diversity following land application of swine slurry. Agricultural Sciences, 10(2), 150–163. https://doi.org/10.4236/as.2019.102013
Sharma, N., & Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: A review. International Journal of Agriculture, Environment and Biotechnology, 10(6), 675. https://doi.org/10.5958/2230-732x.2017.00083.3
Simoni, S., Nannelli, R., Castagnoli, M., Goggioli, D., Moschini, V., Vazzana, C., Benedettelli, S., & Migliorini, P. (2013). Abundance and biodiversity of soil arthropods in one conventional and two organic fields of maize in stockless arable systems. Redia, 96, 37–44. Retrieved from https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1237fdad19d79dc1ee11f4a41cd7973912b5bada
Suhardjono, Y. R., Deharveng, L., & Bedos, A. (2012). Collembola (ekor pegas): Biologi, klasifikasi, ekologi. Bogor: PT Vega Briantama Vandanesia. Retrieved from https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Collembola+%28Ekor+Pegas%29%E2%80%AF%3A+Biologi%2C+Ekologi%2C+Klasifikasi+Suhardjono&btnG=
Supriyadi, S., Vera, I. L. P., & Purwanto. (2021). Soil quality at rice fields with organic, semi-organic and inorganic management in Wonogiri Regency, Indonesia. Caraka Tani: Journal of Sustainable Agriculture, 36(2), 259–269. https://doi.org/10.20961/carakatani.v36i2.42556
Tanzubil, P. B. (2015). Insect pests of sweet potato in the Sudan savanna zone of Ghana. Journal of Entomology and Zoology Studies, 3(2), 124–126. Retrieved from https://www.entomoljournal.com/archives/2015/vol3issue2/PartC/3-2-61.pdf
Thorat, J. C., & More, A. L. (2022). The effect of chemical fertilizers on environment and human health. International Journal of Scientific Development and Research (IJSDR), 7(2), 99–105. Retrieved from http://www.ijsdr.org/papers/IJSDR2202016.pdf
Triplehorn, C. A., & Johnson, N. F. (2005). Borror and DeLong’s introduction to the study of insects (7th ed.). Belmont, California: Thomson Brooks/Cole. Retrieved from https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Borror+and+DeLong%E2%80%99s+Introduction+to+the+Study+of+Insects+&btnG=
Tsutsui, M. H., Kobayashi, K., & Miyashita, T. (2018). Temporal trends in arthropod abundances after the transition to organic farming in paddy fields. PLoS ONE, 13(1), e0190946. https://doi.org/10.1371/journal.pone.0190946
Wheater, C. P., Bell, J. R., & Cook, P. A. (2011). Practical field ecology: A project guide. New Jersey, United State: John Wiley & Sons Ltd. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=wDXnDwAAQBAJ&oi=fnd&pg=PR15&dq=Practical+Field+Ecology:+A+Project+Guide&ots=0hP36wrpjQ&sig=FbOsbGAtpB7-j5Dee5Z3u-ay3h4&redir_esc=y#v=onepage&q=Practical%20Field%20Ecology%3A%20A%20Project%20Guide&f=false
Winkler, D., & Traser, G. (2012). Collembola diversity in agricultural environments (Lajta Project, Western Hungary). International Scientific Conference on Sustainable Development & Ecological Footprint, pp. 1–5. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Collembola+Diversity+in+Agricultural+Environments+(+Lajta+Project+,+Western+Hungary+)#0
Yahyapour, E., Vafaei-Shoushtari, R., Shayanmehr, M., & Arbea, J. (2018). A survey on Entomobryomorpha (Collembola) fauna in northern forests of Iran. Journal of Insect Biodiversity and Systematics, 4(4), 307–316. Retrieved from https://www.biotaxa.org/jibs/article/view/74157
Yin, W. (1998). Pictorical keys to soil animals of China. Beijing, Tiongkok: Science press. Retrieved from https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Pictorial+Keys+to+Soil+Animals+of+China+Wenying&btnG=
Zhang, Q.-C., Shamsi, I. H., Xu, D.-T., Wang, G.-H., Lin, X.-Y., Jilani, G., Hussain, N., & Chaudhry, A. N. (2012). Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Applied Soil Ecology, 57, 1–8. https://doi.org/10.1016/j.apsoil.2012.02.012
Refbacks
- There are currently no refbacks.