Arthropod Community Structure Indicating Soil Quality Recovery in the Organic Agroecosystem of Mount Ciremai National Park’s Buffer Zone

Isma Dwi Kurniawan, Ida Kinasih, Rahmat Taufiq Mustahiq Akbar, Liberty Chaidir, Sawaludin Iqbal, Bayu Pamungkas, Zikri Imanudin


The Mount Ciremai National Park (TNGC) buffer zone is designed to support conservation efforts. However, agriculture in this area is dominated by conventional farming that excessively uses synthetic fertilizers, which threatens soil quality. Introducing an organic fertilizer and plant growth-promoting rhizobacteria (PGPR) is expected to enhance soil quality recovery in this area. This study aimed to analyze the differences in soil arthropod communities between organic and conventional agriculture and a forest in the TNGC buffer zone to assess soil quality improvement generated by the application of the organic fertilizer and PGPR. Soil arthropods were collected with Berlese-Tullgren funnels and pitfall traps. Several associated environmental parameters, including soil pH, C-organic, temperature, and moisture, were also measured. Data were analyzed using ecological indices (i.e., richness, diversity, evenness, dominance, similarity) and soil biological quality (QBS-ar). Non-metric multidimensional scaling (NMDS) was performed to examine the relation of arthropods with environmental parameters. In total, 957 individuals of soil arthropods belonging to four classes and 15 orders were recorded. Berlese-Tullgren and pitfall traps resulted in a similar tendency in most variables, with higher richness, diversity, and evenness values in the forest, followed by organic and conventional habitats. In addition, similarity and QBS-ar indicated that forest and organic communities were more similar than conventional community. C-organic, soil moisture and pH were considered the most deciding environmental parameters for arthropod assemblages. All measured variables in this study illustrated better soil quality in organic than in conventional agriculture. This study implicates the benefit of utilizing organic fertilizers and PGPR for soil quality restoration in agroecosystems.


conservation; ecological indices; organic fertilizers; PGPR; QBS-ar; soil communities

Full Text:



Arunachalam, V., Paramesha, V., Uthappa, A. R., & Kumar, P. (2022). Ecosystem service analysis: Concepts and applications in diversified coconut and arecanut gardens. Goa, India: ICAR-Central Coastal Agricultural Research Institute. Retrieved from

Bhagawati, S., Bhattacharyya, B., Medhi, B. K., Bhattacharjee, S., & Mishra, H. (2021). Diversity of soil dwelling collembola in a forest, vegetable and tea ecosystems of Assam, India. Sustainability, 13(22), 12628.

Calyecac-Cortero, H. G., Miranda-Rangel, A., & Jimenez-Morales, M. (2015). Collembola indicators of soil fertility. ECORFAN Journal-Republic of Nicaragua, 1(1), 12–18. Retrieved from

Das, S., Mohanty, S., Sahu, G., & Sarkar, S. (2020). Sustainable agriculture: A path towards better future. Food and Scientific Reports, 1(9), 22–25. Retrieved from

Disi, J., Simmons, J., & Zebelo, S. (2019). Plant growth-promoting rhizobacteria-induced defense against insect herbivores. In D. K. Maheshwari & S. Dheeman (Eds.), Field Crops: Sustainable Management by PGPR. Sustainable Development and Biodiversity, 23. Springer, Cham.

dos Santos, L. A. O., Naranjo-Guevara, N., & Fernandes, O. A. (2017). Diversity and abundance of edaphic arthropods associated with conventional and organic sugarcane crops in Brazil. Florida Entomologist, 100(1), 134–144.

Fess, T. L., & Benedito, V. A. (2018). Organic versus conventional cropping sustainability: A comparative system analysis. Sustainability, 10(1), 272.

Frainer, A., Jabiol, J., Gessner, M. O., Bruder, A., Chauvet, E., & McKie, B. G. (2016). Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning. Oikos, 125(6), 861–871.

Galli, L., Capurro, M., Menta, C., & Rellini, I. (2014). Is the QBS-ar index a good tool to detect the soil quality in Mediterranean areas? A cork tree Quercus suber L. (Fagaceae) wood as a case of study. Italian Journal of Zoology, 81(1), 126–135.

Ghiglieno, I., Simonetto, A., Orlando, F., Donna, P., Tonni, M., Valenti, L., & Gilioli, G. (2020). Response of the arthropod community to soil characteristics and management in the franciacorta viticultural area (Lombardy, Italy). Agronomy, 10(5), 740.

Ghiglieno, I., Simonetto, A., Sperandio, G., Ventura, M., Gatti, F., Donna, P., Tonni, M., Valenti, L., & Gilioli, G. (2021). Impact of environmental conditions and management on soil arthropod communities in vineyard ecosystems. Sustainability, 13(21), 11999.

Gibb, T. J., & Oseto, C. Y. (2005). Arthropod collection and identification: Laboratory and field techniques. United State: Academic Press. Retrieved from

Gkisakis, V. D., Kollaros, D., Bàrberi, P., Livieratos, I. C., & Kabourakis, E. M. (2015). Soil arthropod diversity in organic, integrated, and conventional olive orchards and different agroecological zones in Crete, Greece. Agroecology and Sustainable Food Systems, 39(3), 276–294.

Gonalves, M. F., & Pereira, J. A. (2012). Abundance and diversity of soil arthropods in the olive grove ecosystem. Journal of Insect Science, 12, 20.

He, Z. L., Yang, X. E., & Stoffella, P. J. (2005). Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19(2–3), 125–140.

Hernández-Gutiérrez, E., Osten, J. R. Von, Escalona-Segura, G., Mendoza-Vega, J., Dzul-Caamal, R., Posthumus, S., Vastenhouw, R., Yang, X., Geissen, V., & Huerta-Lwanga, E. (2021). Morphospecies abundance of above-ground invertebrates in agricultural systems under glyphosate and microplastics in south-eastern Mexico. Environments, 8(11), 130.

Himuro, C., Kohama, T., Matsuyama, T., Sadoyama, Y., Kawamura, F., Honma, A., Ikegawa, Y., & Haraguchi, D. (2022a). First case of successful eradication of the sweet potato weevil, Cylas formicarius (Fabricius), using the sterile insect technique. PLoS ONE, 17(5), e0267728.

Himuro, C., Misa, K., Honma, A., Ikegawa, Y., Ohishi, T., & Kumano, N. (2022b). Effects of larval diet on the male reproductive traits in the west indian sweet potato weevils Euscepes postfasciatus (Coleoptera: Curculionidae). Insects, 13, 389.

Horváth, A., Csáki, P., Szita, R., Kalicz, P., Gribovszki, Z., Bidló, A., Bolodár-Varga, B., Balázs, P., & Winkler, D. (2021). A complex soil ecological approach in a sustainable urban environment: Soil properties and soil biological quality. Minerals, 11(7), 704.

Inagaki, H., Yuto, S., & Daiki, Y. (2022). The effects of different undergrowth vegetation on the types and densities of functional ground-dwelling arthropods in citrus orchards. Caraka Tani: Journal of Sustainable Agriculture, 37(1), 62–70.

Kinasih, I., Cahyanto, T., Widiana, A., Kurnia, D. N. I., Julita, U., & Putra, R. E. (2016). Soil invertebrate diversity in coffee-pine agroforestry system at Sumedang, West Java. Biodiversitas, 17(2), 473–478.

Krause, A., Sandmann, D., Potapov, A., Ermilov, S., Widyastuti, R., Haneda, N. F., Scheu, S., & Maraun, M. (2021). Variation in community-level trophic niches of soil microarthropods with conversion of tropical rainforest into plantation systems as indicated by stable isotopes (15N, 13C). Frontiers in Ecology and Evolution, 9, 592149.

Kurniawan, I. D., Rahmadi, C., Caraka, R. E., Rahman, I. M., Kinasih, I., Toharudin, T., Chen, R. C., & Lee, Y. (2020). Correspondence between bats population and terrestrial cave-dwelling arthropods community in Tasikmalaya karst area. Communications in Mathematical Biology and Neuroscience, 59, 4830.

Kurniawan, I. D., Soesilohadi, R. C. H., Rahmadi, C., Caraka, R. E., & Pardamean, B. (2018). The difference on arthropod communities’ structure within show caves and wild caves in Gunungsewu karst area, Indonesia. Ecology, Environment and Conservation, 24(1), 72–81. Retrieved from

Langraf, V., Petrovičová, K., Schlarmannová, J., & Chovancová, Z. (2022). Changes in the community structure of epigeic arthropods in the conditions of ecological farming of pea (Pisum sativum L.). Chilean Journal of Agricultural Research, 82(4), 527–536.

Langraf, V., Petrovičová, K., Schlarmannová, J., David, S., Avtaeva, T. A., & Brygadyrenko, V. V. (2021). Assessment of soil quality in agroecosystems based on soil fauna. Biosystems Diversity, 29(4), 319–325.

Leksono, A., Putri, N., Gama, Z., Yanuwiyadi, B., & Zairina, A. (2019). Soil arthropod diversity and composition inhabited various habitats in Universitas Brawijaya Forest in Malang East Java Indonesia. Journal of Tropical Life Science, 9(1), 15–22.

Li, Y., Li, Z., Arafat, Y., Lin, W., Jiang, Y., Weng, B., & Lin, W. (2017). Characterizing rhizosphere microbial communities in long-term monoculture tea orchards by fatty acid profiles and substrate utilization. European Journal of Soil Biology, 81, 48–54.

Lin, W., Lin, M., Zhou, H., Wu, H., Li, Z., & Lin, W. (2019). The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE, 14(5), e0217018.

Lu, S. S., Huang, S. H., Bordbar, L., & Sung, I. H. (2019). Composition and diversity of ground-dwelling arthropods at Chiayi Agricultural long-term ecological research site in the Southern Taiwan. Journal of Asia-Pacific Biodiversity, 12, 561–569.

Majeed, M. Z., Sarwar, I., Afzal, M., Khalid, M. R., Yahya, M., & Shehzad, K. (2019). Differential composition of edaphic arthropods in different landuse types of District Sargodha (Punjab, Pakistan) and their relationship with soil physico-chemical and biological characteristics. Sarhad Journal of Agriculture, 35(4), 1071–1083.

Mantoni, C., Pellegrini, M., Dapporto, L., Del Gallo, M. M., Pace, L., Silveri, D., & Fattorini, S. (2021). Comparison of soil biology quality in organically and conventionally managed agro-ecosystems using microarthropods. Agriculture, 11, 1022.

Marja, R., Tscharntke, T., & Batáry, P. (2022). Increasing landscape complexity enhances species richness of farmland arthropods, agri-environment schemes also abundance–A meta-analysis. Agriculture, Ecosystems and Environment, 326, 107822.

Menta, C., Conti, F. D., Fondón, C. L., Staffilani, F., & Remelli, S. (2020). Soil arthropod responses in agroecosystem: Implications of different management and cropping systems. Agronomy, 10(7), 982.

Menta, C., Conti, F. D., Pinto, S., & Bodini, A. (2018). Soil biological quality index (QBS-ar): 15 years of application at global scale. Ecological Indicators, 85, 773–780.

Menta, C., & Remelli, S. (2020). Soil health and arthropods: From complex system to worthwhile investigation. Insects, 11, 54.

Mo, L., Xu, G., Zhang, J., Wu, Z., Yu, S., Chen, X., Peng, B., Squartini, A., & Zanella, A. (2021). Threshold reaction of soil arthropods to simulative nitrogen deposition in urban green spaces. Frontiers in Ecology and Evolution, 9, 711774.

Muhtadi, A., Yulianda, F., Boer, M., Krisanti, M., & Desrita. (2023). Ichthyofauna diversity and its distribution in a low-saline lake of Indonesia. HAYATI Journal of Biosciences, 30(3), 421–431.

Nsengimana, V., Kaplin, B. A., Francis, F., & Nsabimana, D. (2018). Use of soil and litter arthropods as biological indicators of soil uality in forest plantationsand agricultural lands: A review. Entomologie Fauistique. Faunistic Entomology, 71, 1–12. Retrieved from

Okereafor, U., Makhatha, M., Mekuto, L., Uche-Okereafor, N., Sebola, T., & Mavumengwana, V. (2020). Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. International Journal of Environmental Research and Public Health, 17, 2204.

Okpiliya, F. I. (2012). Ecological diversity indices : Any hope for one again ? Journal of Environment and Earth Science, 2(10), 45–52. Retrieved from

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2020). Package ‘vegan’. Community ecology package, version, 1–295. Retrieved from

Oliver, I., & Beattie, A. J. (1996). Invertebrate morphospecies as surrogates for species: A case study. Conservation Biology, 10(1), 99–109.

Ostandie, N., Giffard, B., Bonnard, O., Joubard, B., Richart-Cervera, S., Thiéry, D., & Rusch, A. (2021). Multi-community effects of organic and conventional farming practices in vineyards. Scientific Reports, 11, 11979.

Parisi, V., Menta, C., Gardi, C., Jacomini, C., & Mozzanica, E. (2005). Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agriculture, Ecosystems and Environment, 105, 323–333.

Paudel, A., & Tiwari, S. (2022). Abundance and diversity of soil arthropods in different habitats in Chitwan Nepal. Journal of the Plant Protection Society, 7(1), 1–10.

Ponge, J. F., Gillet, S., Dubs, F., Fedoroff, E., Haese, L., Sousa, J. P., & Lavelle, P. (2003). Collembolan communities as bioindicators of land use intensification. Soil Biology and Biochemistry, 35(6), 813–826.

Potapov, A. M., Goncharov, A. A., Semenina, E. E., Korotkevich, A. Y., Tsurikov, S. M., Rozanova, O. L., Anichkin, A. E., Zuev, A. G., Samoylova, E. S., Semenyuk, I. I., Yevdokimov, I. V., & Tiunov, A. V. (2017). Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. European Journal of Soil Biology, 82, 88–97.

Prather, R. M., Castillioni, K., Welti, E. A. R., Kaspari, M., & Souza, L. (2020). Abiotic factors and plant biomass, not plant diversity, strongly shape grassland arthropods under drought conditions. Ecology, 101(6), e03033.

Rahman, P. M., Varma, R. V., & Sileshi, G. W. (2012). Abundance and diversity of soil invertebrates in annual crops, agroforestry and forest ecosystems in the Nilgiri biosphere reserve of Western Ghats, India. Agroforestry Systems, 85(1), 165–177.

Reddy, B. T., & Giraddi, R. S. (2019). Diversity studies on insect communities in organic, conservation and conventional farming systems under rain-fed conditions. Journal of Entomology and Zoology Studies, 7(3), 883–886. Retrieved from

Reddy, G. V. P., Zhao, Z., & Humber, R. A. (2014). Laboratory and field efficacy of entomopathogenic fungi for the management of the sweetpotato weevil, Cylas formicarius (Coleoptera: Brentidae). Journal of Invertebrate Pathology, 122, 10–15.

Reid, C. A. M., & Storey, R. I. (1993). Redescription of adult and larva of Colasposoma sellatum Baly (Coleoptera: Chrysomelidae: Eumolpinae): a pest of sweet potato in Australia. Journal of Natural History, 27(3), 669–681.

Schuster, N. R., Peterson, J. A., Gilley, J. E., Schott, L. R., & Schmidt, A. M. (2019). Soil arthropod abundance and diversity following land application of swine slurry. Agricultural Sciences, 10(2), 150–163.

Sharma, N., & Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: A review. International Journal of Agriculture, Environment and Biotechnology, 10(6), 675.

Simoni, S., Nannelli, R., Castagnoli, M., Goggioli, D., Moschini, V., Vazzana, C., Benedettelli, S., & Migliorini, P. (2013). Abundance and biodiversity of soil arthropods in one conventional and two organic fields of maize in stockless arable systems. Redia, 96, 37–44. Retrieved from

Suhardjono, Y. R., Deharveng, L., & Bedos, A. (2012). Collembola (ekor pegas): Biologi, klasifikasi, ekologi. Bogor: PT Vega Briantama Vandanesia. Retrieved from

Supriyadi, S., Vera, I. L. P., & Purwanto. (2021). Soil quality at rice fields with organic, semi-organic and inorganic management in Wonogiri Regency, Indonesia. Caraka Tani: Journal of Sustainable Agriculture, 36(2), 259–269.

Tanzubil, P. B. (2015). Insect pests of sweet potato in the Sudan savanna zone of Ghana. Journal of Entomology and Zoology Studies, 3(2), 124–126. Retrieved from

Thorat, J. C., & More, A. L. (2022). The effect of chemical fertilizers on environment and human health. International Journal of Scientific Development and Research (IJSDR), 7(2), 99–105. Retrieved from

Triplehorn, C. A., & Johnson, N. F. (2005). Borror and DeLong’s introduction to the study of insects (7th ed.). Belmont, California: Thomson Brooks/Cole. Retrieved from

Tsutsui, M. H., Kobayashi, K., & Miyashita, T. (2018). Temporal trends in arthropod abundances after the transition to organic farming in paddy fields. PLoS ONE, 13(1), e0190946.

Wheater, C. P., Bell, J. R., & Cook, P. A. (2011). Practical field ecology: A project guide. New Jersey, United State: John Wiley & Sons Ltd. Retrieved from

Winkler, D., & Traser, G. (2012). Collembola diversity in agricultural environments (Lajta Project, Western Hungary). International Scientific Conference on Sustainable Development & Ecological Footprint, pp. 1–5. Retrieved from,+Western+Hungary+)#0

Yahyapour, E., Vafaei-Shoushtari, R., Shayanmehr, M., & Arbea, J. (2018). A survey on Entomobryomorpha (Collembola) fauna in northern forests of Iran. Journal of Insect Biodiversity and Systematics, 4(4), 307–316. Retrieved from

Yin, W. (1998). Pictorical keys to soil animals of China. Beijing, Tiongkok: Science press. Retrieved from

Zhang, Q.-C., Shamsi, I. H., Xu, D.-T., Wang, G.-H., Lin, X.-Y., Jilani, G., Hussain, N., & Chaudhry, A. N. (2012). Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Applied Soil Ecology, 57, 1–8.


  • There are currently no refbacks.