Development of Clove (Syzygium aromaticum) and Cinnamon (Cinnamomum burmannii) Based Food Sanitizer

Natania Kam, Mikaela Joanina, Hardoko Hardoko, Dela Rosa, Jeremia Manuel Halim

Abstract

Although minimally processed food contains more beneficial nutrients, it is one of the largest sources of food-borne diseases. Therefore, this research aims to develop the efficiency of food sanitizer, targeted toward fresh food products using a green chemistry approach. The cinnamon and clove were extracted using water distillation and ethanol extraction with the green technique. The extracts were characterized for antimicrobial activity and incorporated into basic food sanitizer formulation. The solution's color and stability were evaluated and the sanitizer was applied to decontaminate fresh strawberries. The total microbial load before and after the application was also compared to determine the effectiveness of the food sanitizer. Based on the results, all the extracts showed high effectiveness in inhibiting various spoilage microorganisms that exist in food produced with water distillation. The extracts also showed better ability when incorporated into a water-based sanitizer. All the developed food sanitizers can reduce the microbial load of the fresh produce by 4 log per 5 minutes of contact time. Meanwhile, the water-distilled clove extract showed the most effectiveness, decreasing microbial log by 3.93±0.07 log CFU g-1 of bacteria load and 4.37±0.14 log CFU g-1 of mold load, respectively which performed good dispersion stability for approximately 10 days of observation. This indicated that food sanitizer using water-distilled clove extract could be applied as a good alternative to chemical-based sanitizer.

Keywords

antimicrobial activity; ethanolic extract; food sanitizer; minimally processed food

Full Text:

PDF

References

Agustin, R. D., & Taihuttu, Y. M. J. (2021). Formulation and physical stability test of hand sanitizer based on nutmeg oil (Myristica fragrans Houtt). IOP Conference Series: Earth and Environmental Science, 800, 012032. https://doi.org/10.1088/1755-1315/800/1/012032

Ahmad, N., Alam, M. K., Shehbaz, A., Khan, A., Mannan, A., Hakim, S. R., Bisht, D., & Owais, M. (2005). Antimicrobial activity of clove oil and its potential in the treatment of vaginal candidiasis. Journal of Drug Targeting, 13(10), 555–561. https://doi.org/10.1080/10611860500422958

Ahmed, S., Bari, L., Rahman, A., Goffar, M. A., Acedo, A., Easdown, W., Hughes, J., & Keatinge, J. D. H. (2017). Development of novel sanitizers for fresh vegetables. Acta Horticulturae, 1179, 143–148. https://doi.org/10.17660/ActaHortic.2017.1179.22

Alghaith, A. F., Alshehri, S., Alhakamy, N. A., & Hosny, K. M. (2021). Development, optimization and characterization of nanoemulsion loaded with clove oil-naftifine antifungal for the management of tinea. Drug Delivery, 28(1), 343–356. https://doi.org/10.1080/10717544.2021.1879314

Amelia, B., Saepudin, E., Cahyana, A. H., Rahayu, D. U., Sulistyoningrum, A. S., & Haib, J. (2017). GC-MS analysis of clove (Syzygium aromaticum) bud essential oil from Java and Manado. AIP Conference Proceedings, 1862(1), 30082. https://doi.org/10.1063/1.4991186

Berrios-Rodriguez, A.,Ukuku, D. O.,Olanya, M., Cassidy, J., Orellan, L. E., Mukopadhya., & Niemira, B. A. (2019). Nisin-based organic acid inactivation of salmonella on grape tomatoes: Efficacy of treatment with Bioluminescence ATP assay. Journal of Food Protection, 83(1), 68–74. https://doi.org/10.4315/0362-028X.JFP-19-275

Carstens, C. K., Salazar, J. K., & Darkoh, C. (2019). Multistate outbreaks of foodborne illness in the United States associated with fresh produce from 2010 to 2017. Frontiers in Microbiology, 10, 2667. https://doi.org/10.3389/fmicb.2019.02667

Chen, C.-H., Yin, H.-B., Teng, Z. I., Byun, S., Guan, Y., Luo, Y., Upaydhay, A., & Patel, J. (2021). Nanoemulsified carvacrol as a novel washing treatment reduces Escherichia coli O157:H7 on spinach and lettuce. Journal of Food Protection, 84(12), 2163–2173. https://doi.org/10.4315/JFP-21-151

Dos Santos, L. S., da Silva, L. V., Lepaus, B. M., & de São José, J. F. B. (2021). Microbial quality and labeling of minimally processed fruits and vegetables. Bioscience Journal, 37, e37059. https://doi.org/10.14393/BJ-v37n0a2021-53734

El Atki, Y., Aouam, I., El Kamari, F., Taroq, A., Nayme, K., Timinouni, M., Lyoussi, B., & Abdellaoui, A. (2019). Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. Journal of Advanced Pharmaceutical Technology & Research, 10(2), 63–67. https://doi.org/10.4103/japtr.JAPTR_366_18

Faujdar, S. S., Bisht, D., & Sharma, A. (2020). Antibacterial activity of Syzygium aromaticum (clove) against uropathogens producing ESBL, MBL, and AmpC beta-lactamase: Are we close to getting a new antibacterial agent? Journal of Family Medicine and Primary Care, 9(1), 180–186. https://doi.org/10.4103/jfmpc.jfmpc_908_19

Gupta, C., Garg, A. P., Uniyal, R. C., & Kumari, A. (2008). Comparative analysis of the antimicrobial activity of cinnamon oil and cinnamon extract on some food-borne microbes. African Journal of Microbiology Research, 2, 247–251. Retrieved from https://academicjournals.org/journal/AJMR/article-full-text-pdf/15879FE11467

Gutiérrez-Martínez, P., Ramos-Guerrero, A., Rodríguez-Pereida, C., Coronado-Partida, L., Angulo-Parra, J., & González-Estrada, R. (2018). Chapter 12-chitosan for postharvest disinfection of fruits and vegetables. In M. W. Siddiqui (Ed.), Postharvest Disinfection of Fruits and Vegetables (pp. 231–241). India: Elsevier Inc. https://doi.org/10.1016/B978-0-12-812698-1.00012-1

Haro-González, J. N., Castillo-Herrera, G. A., Martínez-Velázquez, M., & Espinosa-Andrews, H. (2021). Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules, 26(21), 6387. https://doi.org/10.3390/molecules26216387

Kurniawan, D. W., Wijayanto, B. A., & Sobri, I. (2012). Formulation and effectiveness of antiseptic hand gel preparations essential oils galanga (Alpinia galanga). Asian Journal of Pharmaceutical & Biological Research (AJPBR), 2(4), 245–249. Retrieved from https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Formulation+and+effectiveness+of+antiseptic+hand+gel+preparations+essential+oils+galanga+%28Alpinia+galanga%29&btnG=

Li, Y., Nie, Y.-Y., Zhou, L., Li, S., Tang, X., Ding, Y., & Li, S. (2014). The possible mechanism of antifungal activity of cinnamon oil against Rhizopus nigricans. Journal of Chemical and Pharmaceutical Research, 6(5), 12–20. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20143245847

Liu, Q., Meng, X., Li, Y., Zhao, C.-N., Tang, G.-Y., & Li, H.-B. (2017). Antibacterial and antifungal activities of spices. International Journal of Molecular Sciences, 18(6), 1283. https://doi.org/10.3390/ijms18061283

Lixandru, B.-E., Drăcea, N. O., Dragomirescu, C. C., Drăgulescu, E. C., Coldea, I. L., Anton, L., Dobre, E., Rovinaru, C., & Codiţă, I. (2010). Antimicrobial activity of plant essential oils against bacterial and fungal species involved in food poisoning and/or food decay. Roumanian Archives of Microbiology and Immunology, 69(4), 224–230. Retrieved from https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=Antimicrobial+activity+of+plant+essential+oils+against+bacterial+and+fungal+species+involved+in+food+poisoning+and%2For+food+decay&btnG=

Lynch, M. F., Tauxe, R. V., & Hedberg, C. W. (2009). The growing burden of foodborne outbreaks due to contaminated fresh produce: Risks and opportunities. Epidemiology and Infection, 137(3), 307–315. https://doi.org/10.1017/S0950268808001969

Mohapatra, S. (2017). Sterilization and disinfection. Essentials of Neuroanesthesia, 929–944. https://doi.org/10.1016/B978-0-12-805299-0.00059-2

Ningsih, D. R., Zusfahair, Z., Kartika, D., & Fatoni, A. (2017). Formulation of handsanitizer with antibacterials substance from n-hexane extract of soursop leaves (Annona Muricata Linn). Malaysian Journal of Fundamental and Applied Sciences, 13(1), 1–5. https://doi.org/10.11113/mjfas.v13n1.527

Nzeako, B. C., Al-Kharousi, Z. S. N., & Al-Mahrooqui, Z. (2006). Antimicrobial activities of clove and thyme extracts. Sultan Qaboos University Medical Journal, 6(1), 33–39. https://pubmed.ncbi.nlm.nih.gov/21748125

O'Brien, D. (2016). New antimicrobial wash for fresh produce. Agricultural Research, 64(1), 1. Washington: The United States Department of Agriculture. Retrieved from https://scholar.google.com/scholar?hl=id&as_sdt=0%2C5&q=New+Antimicrobial+Wash+for+Fresh+Produce+Dennis+O%E2%80%99Brien&btnG=

Olaimat, A. N., & Holley, R. A. (2012). Factors influencing the microbial safety of fresh produce: A review. Food Microbiology, 32(1), 1–19. https://doi.org/10.1016/j.fm.2012.04.016

Parhusip, A. J. N., & Sitanggang, A. B. (2011). Antimicrobial activity of melinjo seed and peel extract (Gnetum gnemon) against selected pathogenic bacteria. Microbiology Indonesia, 5(3), 103–112. https://doi.org/10.5454/mi.5.3.2

Raffo, A., & Paoletti, F. (2022). Fresh-cut vegetables processing: Environmental sustainability and food safety issues in a comprehensive perspective. Frontiers in Sustainable Food Systems, 5, 681459. https://doi.org/10.3389/fsufs.2021.681459

Robiatun, R. R., Pangondian, A., Paramitha, R., Rani, Z., & Gultom, E. D. (2022). Formulation and evaluation of hand sanitizer gel from clove flower extract (Eugenia aromatica L.). International International Journal of Science, Technology & Management, 3(2), 484–491. https://doi.org/10.46729/ijstm.v3i2.472

Sanla-Ead, N., Jangchud, A., Chonhenchob, V., & Suppakul, P. (2012). Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose_based packaging films. Packaging Technology and Science, 25, 7–17. https://doi.org/10.1002/pts.952

Sarno, E., Pezzutto, D., Rossi, M., Liebana, E., & Rizzi, V. (2021). A review of significant European foodborne outbreaks in the last decade. Journal of Food Protection, 84(12), 2059–2070. https://doi.org/10.4315/JFP-21-096

Sarron, E., Gadonna-Widehem, P., & Aussenac, T. (2021). Ozone treatments for preserving fresh vegetables quality: A critical review. Foods, 10(3), 605. https://doi.org/10.3390/foods10030605

Shin, J. M., Gwak, J. W., Kamarajan, P., Fenno, J. C., Rickard, A. H., & Kapila, Y. L. (2016). Biomedical applications of nisin. Journal of Applied Microbiology, 120(6), 1449–1465. https://doi.org/10.1111/jam.13033

Tarek, N., Hassan, H. M., AbdelGhani, S. M. M., Radwan, I. A., Hammouda, O., & El-Gendy, A. O. (2014). Comparative chemical and antimicrobial study of nine essential oils obtained from medicinal plants growing in Egypt. Beni-Suef University Journal of Basic and Applied Sciences, 3(2), 149–156. https://doi.org/10.1016/j.bjbas.2014.05.009

Tournas, V. H., & Katsoudas, E. (2005). Mould and yeast flora in fresh berries, grapes and citrus fruits. International Journal of Food Microbiology, 105(1), 11–17. https://doi.org/10.1016/j.ijfoodmicro.2005.05.002

Valdez, M. I., Garcia, J., Ubeda-Manzanaro, M., Martinez, A., & Rodrigo, D. (2022). Insect chitosan is a natural antimicrobial against vegetative cells of Bacillus cereus in a cooked rice matrix. Food Microbiology, 107, 104077. https://doi.org/10.1016/j.fm.2022.104077

Wang, J., Yu, Y., & Dong, Y. (2020). Disinfection of ready-to-eat lettuce using polyhexamethylene guanidine hydrochloride. Microorganisms, 8(2), 272. https://doi.org/10.3390/microorganisms8020272

Wong, Y. C., Ahmad-Mudzaqqir, M. Y., & Wan-Nurdiyana, W. A. (2014). Extraction of essential oil from cinnamon (Cinnamomum zeylanicum). Oriental Journal of Chemistry, 30, 37–47. http://dx.doi.org/10.13005/ojc/300105

Zoellner, C., Aguayo-Acosta, A., Siddiqui, M. W., & Dávila-Aviña, J. E. (2018). Chapter 2-peracetic acid in disinfection of fruits and vegetables. In Postharvest disinfection of fruits and vegetables (pp. 53–66). Academic Press. https://doi.org/10.1016/B978-0-12-812698-1.00002-9

Refbacks

  • There are currently no refbacks.