An Assessment of the Interaction between Carbon Dioxide Emissions and Available Nutrients from the Lifecycle of Several Agricultural Crops
Abstract
Keywords
Full Text:
PDFReferences
Aleksandrowicz, L., Green, R., Joy, E. J. M., Smith, P., & Haines, A. (2016). The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: A systematic review. PLoS ONE, 11(11), e0165797. https://doi.org/10.1371/journal.pone.0165797
Angon, P. B., Khan, M. M. R., Islam, M. S., Suma, R. P., & Habiba, U. (2022). Evaluating the parameters influencing agricultural productivity due to the limitations of smartphone-related knowledge among farmers. Archives of Agriculture and Environmental Science, 7(1), 80–85. https://doi.org/10.26832/24566632.2022.0701011
Angon, P. B., Salehin, I., Khan, M. M. R., & Mondal, S. (2021a). Cropland mapping expansion for production forecast: Rainfall, relative humidity and temperature estimation. International Journal of Engineering and Manufacturing (IJEM), 11(5), 25–40. http://dx.doi.org/10.5815/ijem.2021.05.03
Angon, P. B., Salehin, I., Mondal, S., Khan, M. M. R., Uddin, M. N., & Lopa, I. J. (2021b). A survey on healthy food demand and diseases factors in urban and rural area: Prospective on Bangladesh. IEEE 6th International Conference on Computing, Communication and Automation (ICCCA), 316–321. https://doi.org/10.1109/ICCCA52192.2021.9666430
Arumugham, T., Rambabu, K., Hasan, S. W., Show, P. L., Rinklebe, J., & Banat, F. (2021). Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications–A review. Chemosphere, 271, 129525. https://doi.org/10.1016/j.chemosphere.2020.129525
Beyer, R. M., Durán, A. P., Rademacher, T. T., Martin, P., Tayleur, C., Brooks, S. E., Coomes, D., Donald, P. F., & Sanderson, F. J. (2020). The environmental impacts of palm oil and its alternatives. bioRxiv, 2020.02.16.951301. https://doi.org/10.1101/2020.02.16.951301
Carlson, K. M., Gerber, J. S., Mueller, N. D., Herrero, M., MacDonald, G. K., Brauman, K. A., Havlik, P., O' Connell, C. S., Johnson, J. A., Saatchi, S., & West, P. C. (2017). Greenhouse gas emissions intensity of global croplands. Nature Climate Change, 7(1), 63–68. https://doi.org/10.1038/nclimate3158
Chandio, A. A., Magsi, H., & Ozturk, I. (2020). Examining the effects of climate change on rice production: Case study of Pakistan. Environmental Science and Pollution Research, 27(8), 7812–7822. https://doi.org/10.1007/s11356-019-07486-9
Chen, J., Cheng, S., & Song, M. (2018). Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013. Renewable and Sustainable Energy Reviews, 94, 748–761. http://doi.org/10.1016/j.rser.2018.06.050
Collins, A. M., Haddaway, N. R., Thomas, J., Randall, N. P., Taylor, J. J., Berberi, A., Reid, J. L., Andrews, C. R., & Cooke, S. J. (2022). Existing evidence on the impacts of within-field farmland management practices on the flux of greenhouse gases from arable cropland in temperate regions: A systematic map. Environmental Evidence, 11, 24. https://doi.org/10.1186/s13750-022-00275-x
Feitz, A., Schroder, I., Phillips, F., Coates, T., Negandhi, K., Day, S., Luhar, A., Bhatia, S., Edwards, G., Hrabar, S., Hernandez, E., Wood, B., Naylor, T., Kennedy, M., Hamilton, M., Hatch, M., Malos, J., Kochanek, M., … & Griffith, D. (2018). The Ginninderra CH4 and CO2 release experiment: An evaluation of gas detection and quantification techniques. International Journal of Greenhouse Gas Control, 70, 202–224. https://doi.org/10.1016/j.ijggc.2017.11.018
Firouzi, S., Gholami-Parashkoohi, M., Zamani, D. M., & Ranjber, I. (2022). An investigation of the environmental impacts and energy-economic analysis for sugar beet and sugarcane production systems. Sugar Tech, 1–16. http://dx.doi.org/10.1007/s12355-022-01135-1
Gadal, N., Shrestha, J., Poudel, M. N., & Pokharel, B. (2019). A review on production status and growing environments of rice in Nepal and in the world. Archives of Agriculture and Environmental Science, 4(1), 83–87. https://doi.org/10.26832/24566632.2019.0401013
Gifford, R. M. (2003). Plant respiration in productivity models: Conceptualisation, representation and issues for global terrestrial carbon-cycle research. Functional Plant Biology, 30(2), 171–186. http://dx.doi.org/10.1071/FP02083
Gilbert, N. (2012). One-third of our greenhouse gas emissions come from agriculture. Nature, 31, 10–12. https://doi.org/10.1038/nature.2012.11708
Hannigan, K. (2014). Protection and security in a technologically advanced society: Children and young people’s perspectives [Thesis]. Stirling, Skotlandia: Faculty of Social Sciences, University of Stirling. Retrieved from http://hdl.handle.net/1893/21562
Haque, M. M., Datta, J., Ahmed, T., Ehsanullah, M., Karim, M. N., Akter, M. S., Baazeem, A., Hadifa, A., Ahmed, S., & Sabagh, A. E. L. (2021). Organic amendments boost soil fertility and rice productivity and reduce methane emissions from paddy fields under sub-tropical conditions. Sustainability, 13(6), 3103. https://doi.org/10.3390/su13063103
Huong, N. V., Nguyet, B. T. M., Hung, H. V., Duc, H. M., Chuong, N. V., Tri, D. M., & Hien, P. V. (2022). Economic impact of climate change on agriculture: A case of Vietnam. AgBioForum, 24(1), 1–12. Retrieved from https://mospace.umsystem.edu/xmlui/handle/10355/91382
Kaggle. (2022). Environment impact of food production. Retrieved from https://www.kaggle.com/datasets/selfvivek/environment-impact-of-food-production
Lawlor, D. W., & Mitchell, R. A. C. (1991). The effects of increasing CO2 on crop photosynthesis and productivity: A review of field studies. Plant, Cell & Environment, 14(8), 807–818. https://doi.org/10.1111/j.1365-3040.1991.tb01444.x
Linquist, B., Van Groenigen, K. J., Adviento‐Borbe, M. A., Pittelkow, C., & Van-Kessel, C. (2012). An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology, 18(1), 194–209. http://dx.doi.org/10.1111/j.1365-2486.2011.02502.x
Liu, S., Waqas, M. A., Wang, S. H., Xiong, X. Y., & Wan, Y. F. (2017). Effects of increased levels of atmospheric CO2 and high temperatures on rice growth and quality. PLoS ONE, 12(11), e0187724. https://doi.org/10.1371/journal.pone.0187724
Meier, E. A., Thorburn, P. J., Bell, L. W., Harrison, M. T., & Biggs, J. S. (2020). Greenhouse gas emissions from cropping and grazed pastures are similar: A simulation analysis in Australia. Frontiers in Sustainable Food Systems, 3, 121. http://dx.doi.org/10.3389/fsufs.2019.00121
Naskar, S., Gowane, G. R., & Chopra, A. (2015). Strategies to improve livestock genetic resources to counter climate change impact. In: Sejian, V., Gaughan, J., Baumgard, L., Prasad, C. (eds) Climate Change Impact on Livestock: Adaptation and Mitigation. New Delhi: Springer. https://doi.org/10.1007/978-81-322-2265-1_25
Nutter, D. W., Kim, D. S., Ulrich, R., & Thoma, G. (2013). Greenhouse gas emission analysis for USA fluid milk processing plants: Processing, packaging, and distribution. International Dairy Journal, 31(Supplement 1), S57–S64. https://doi.org/10.1016/j.idairyj.2012.09.011
Poudel, M. P., & Chen, S. E. (2012). Trends and variability of rice, maize, and wheat yields in South Asian countries: A challenge for food security. Asian Journal of Agriculture and Rural Development, 2(4), 584–597. http://dx.doi.org/10.22004/ag.econ.198004
Powlson, D. S., Stirling, C. M., Thierfelder, C., White, R. P., & Jat, M. L. (2016). Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agriculture, Ecosystems & Environment, 220, 164–174. https://doi.org/10.1016/j.agee.2016.01.005
Riya, S., Katayama, M., Takahashi, E., Zhou, S., Terada, A., & Hosomi, M. (2014). Mitigation of greenhouse gas emissions by water management in a forage rice paddy field supplemented with dry-thermophilic anaerobic digestion residue. Water, Air, & Soil Pollution, 225, 2118. http://dx.doi.org/10.1007/s11270-014-2118-3
Sanz-Cobena, A., Lassaletta, L., Aguilera, E., del Prado, A., Garnier, J., Billen, G., Iglesias, A., Sánchez, B., Guardia, G., Abalos, D., Plaza-Bonilla, D., Puigdueta-Bartolomé, I., Moral, R., Galán, E., Arriaga, H., Merino, P., Infante-Amate, J., Meijide, A., & Smith, P. (2017). Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture, Ecosystems & Environment, 238, 5–24. https://doi.org/10.1016/j.agee.2016.09.038
Sapkota, T. B., Jat, M. L., Rana, D. S., Khatri-Chhetri, A., Jat, H. S., Bijarniya, D., Sutaliya, J. M., Kumar, M., Singh, L. K., Jat, R. K., Kalvaniya, K., Prasad, G., Sidhu, H. S., Rai, M., Satyanarayana, T., & Majumdar, K. (2021). Crop nutrient management using Nutrient Expert improves yield, increases farmers’ income and reduces greenhouse gas emissions. Scientific reports, 11, 1702. https://doi.org/10.1038/s41598-020-79883-x
Silva, G. F. P., Pereira, E., Melgar, B., Stojković, D., Sokovic, M., Calhelha, R. C., Pereira, C., Abreu, R. M. V., Ferreira, I. C. F. A., & Barros, L. (2020). Eggplant fruit (Solanum melongena L.) and bio-residues as a source of nutrients, bioactive compounds, and food colorants, using innovative food technologies. Applied Sciences, 11(1), 151. https://doi.org/10.3390/app11010151
Skinner, C., Gattinger, A., Krauss, M., Krause, H. M., Mayer, J., Van Der Heijden, M. G., & Mäder, P. (2019). The impact of long-term organic farming on soil-derived greenhouse gas emissions. Scientific reports, 9, 1702. https://doi.org/10.1038/s41598-018-38207-w
Smith, P. (2015). Malthus is still wrong: We can feed a world of 9–10 billion, but only by reducing food demand. Proceedings of the Nutrition Society, 74(3), 187–190. https://doi.org/10.1017/S0029665114001517
Tajfel, H. (1978). Differentiation between social groups: Studies in the social psychology of intergroup relations. Cambridge, Amerika Serikat: Academic Press. Retrieved from https://psycnet.apa.org/record/1980-50696-000
Ulfat, A., Shokat, S., Li, X., Fang, L., Großkinsky, D. K., Majid, S. A., Roitsch, T., & Liu, F. (2021). Elevated carbon dioxide alleviates the negative impact of drought on wheat by modulating plant metabolism and physiology. Agricultural Water Management, 250, 106804. https://doi.org/10.1016/j.agwat.2021.106804
Valcarcel, J., Reilly, K., Gaffney, M., & O’Brien, N. (2015). Total carotenoids and l-ascorbic acid content in 60 varieties of potato (Solanum tuberosum L.) grown in Ireland. Potato Research, 58(1), 29–41. http://dx.doi.org/10.1007/s11540-014-9270-4
van Loon, M. P., Hijbeek, R., Ten Berge, H. F., De Sy, V., Ten Broeke, G. A., Solomon, D., & van Ittersum, M. K. (2019). Impacts of intensifying or expanding cereal cropping in Sub‐Saharan Africa on greenhouse gas emissions and food security. Global change biology, 25(11), 3720–3730. https://doi.org/10.1111/gcb.14783
Varma, K., & Linn, M. C. (2012). Using interactive technology to support students’ understanding of the greenhouse effect and global warming. Journal of Science Education and Technology, 21(4), 453–464. https://doi.org/10.1007/s10956-011-9337-9
Vetter, S. H., Sapkota, T. B., Hillier, J., Stirling, C. M., Macdiarmid, J. I., Aleksandrowicz, L., Green, R., Joy, E. J. M., Dangour, A. D., & Smith, P. (2017). Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agriculture, Ecosystems & Environment, 237, 234–241. https://doi.org/10.1016/j.agee.2016.12.024
Walling, E., & Vaneeckhaute, C. (2020). Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. Journal of Environmental Management, 276, 111211. http://dx.doi.org/10.1016/j.jenvman.2020.111211
Wang, Y., & Sun, T. (2012). Life cycle assessment of CO2 emissions from wind power plants: Methodology and case studies. Renewable Energy, 43, 30–36. https://doi.org/10.1016/j.renene.2011.12.017
Xiong, C., Yang, D., Xia, F., & Huo, J. (2016). Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China. Scientific Reports, 6, 36912. https://doi.org/10.1038/srep36912
Yamanoshita, M. (2019). IPCC special report on climate change and land. Institute for Global Environmental Strategies. Retrieved from https://www.jstor.org/stable/pdf/resrep22279.pdf
Yan, M., Cheng, K., Luo, T., Yan, Y., Pan, G., & Rees, R. M. (2015). Carbon footprint of grain crop production in China–based on farm survey data. Journal of Cleaner Production, 104, 130–138. https://doi.org/10.1016/j.jclepro.2015.05.058
Zheng, B., Chevallier, F., Ciais, P., Yin, Y., Deeter, M. N., Worden, H. M., Wang, Y., Zhang, Q., & He, K. (2018). Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environmental Research Letters, 13(4), 044007. https://doi.org/10.1088/1748-9326/aab2b3
Zhou, R., Kong, L., Yu, X., Ottosen, C. O., Zhao, T., Jiang, F., & Wu, Z. (2019). Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress. Acta Physiologiae Plantarum, 41, 20. https://doi.org/10.1007/s11738-019-2805-1
Refbacks
- There are currently no refbacks.