An Assessment of the Interaction between Carbon Dioxide Emissions and Available Nutrients from the Lifecycle of Several Agricultural Crops

Prodipto Bishnu Angon, Md. Mahbubur Rahman Khan, Sadia Haque Tonny

Abstract

Agricultural products cause the emission of certain significant amount of greenhouse gases. Carbon dioxide (CO2) is one of the most important greenhouse gases and its emissions are increasing day by day as a result of the increase in agricultural productivity. This study aims to pinpoint the most environmentally friendly crops and fruits that are sources of good nutrients and emits less CO2 throughout their life cycles. Relation between nutrient availability and CO2 emissions from staple foods namely; wheat, maize, rice, potato, sugarcane, sugar beet, soybean, palm oil, sunflower, rapeseed, banana, apple and grape are investigated in this study. Secondary data was collected from dataset’s website. Spearman's rank and diagram interpretation technique are used to find out the correlation between nutrient availability and CO2 emissions. Among carbohydrate diets, rice emits 4 kg CO2 kg-1 of crops, which is significantly higher than that of wheat, maize and potato. However, the amount of carbohydrates in rice (0.26%) is less than those carbohydrate diets. Similarly, sugarcane emits more CO2 as 2.6 kg kg-1 of crops than sugar beet (1.4 kg kg-1 of crops) among sugar crops. Soybean and palm oil emit more CO2 as 6 kg kg-1 and 7.2 kg kg-1 of crops, respectively, as compared to other oilseed crops, but every oilseed crop has the same food value. Among fruits, bananas emit less CO2 (1.1 kg kg-1 of crops) and have a higher content of carbohydrates (0.23%) than other selected fruits. Proper crop selection based on nutrient content can lead to lower CO2 emissions than at present and a consistent balance between environmental and nutritional needs in the future.

Keywords

carbon dioxide emission; climate change; environment; major crops; nutritional value

Full Text:

PDF

References

Aleksandrowicz, L., Green, R., Joy, E. J. M., Smith, P., & Haines, A. (2016). The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: A systematic review. PLoS ONE, 11(11), e0165797. https://doi.org/10.1371/journal.pone.0165797

Angon, P. B., Khan, M. M. R., Islam, M. S., Suma, R. P., & Habiba, U. (2022). Evaluating the parameters influencing agricultural productivity due to the limitations of smartphone-related knowledge among farmers. Archives of Agriculture and Environmental Science, 7(1), 80–85. https://doi.org/10.26832/24566632.2022.0701011

Angon, P. B., Salehin, I., Khan, M. M. R., & Mondal, S. (2021a). Cropland mapping expansion for production forecast: Rainfall, relative humidity and temperature estimation. International Journal of Engineering and Manufacturing (IJEM), 11(5), 25–40. http://dx.doi.org/10.5815/ijem.2021.05.03

Angon, P. B., Salehin, I., Mondal, S., Khan, M. M. R., Uddin, M. N., & Lopa, I. J. (2021b). A survey on healthy food demand and diseases factors in urban and rural area: Prospective on Bangladesh. IEEE 6th International Conference on Computing, Communication and Automation (ICCCA), 316–321. https://doi.org/10.1109/ICCCA52192.2021.9666430

Arumugham, T., Rambabu, K., Hasan, S. W., Show, P. L., Rinklebe, J., & Banat, F. (2021). Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications–A review. Chemosphere, 271, 129525. https://doi.org/10.1016/j.chemosphere.2020.129525

Beyer, R. M., Durán, A. P., Rademacher, T. T., Martin, P., Tayleur, C., Brooks, S. E., Coomes, D., Donald, P. F., & Sanderson, F. J. (2020). The environmental impacts of palm oil and its alternatives. bioRxiv, 2020.02.16.951301. https://doi.org/10.1101/2020.02.16.951301

Carlson, K. M., Gerber, J. S., Mueller, N. D., Herrero, M., MacDonald, G. K., Brauman, K. A., Havlik, P., O' Connell, C. S., Johnson, J. A., Saatchi, S., & West, P. C. (2017). Greenhouse gas emissions intensity of global croplands. Nature Climate Change, 7(1), 63–68. https://doi.org/10.1038/nclimate3158

Chandio, A. A., Magsi, H., & Ozturk, I. (2020). Examining the effects of climate change on rice production: Case study of Pakistan. Environmental Science and Pollution Research, 27(8), 7812–7822. https://doi.org/10.1007/s11356-019-07486-9

Chen, J., Cheng, S., & Song, M. (2018). Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013. Renewable and Sustainable Energy Reviews, 94, 748–761. http://doi.org/10.1016/j.rser.2018.06.050

Collins, A. M., Haddaway, N. R., Thomas, J., Randall, N. P., Taylor, J. J., Berberi, A., Reid, J. L., Andrews, C. R., & Cooke, S. J. (2022). Existing evidence on the impacts of within-field farmland management practices on the flux of greenhouse gases from arable cropland in temperate regions: A systematic map. Environmental Evidence, 11, 24. https://doi.org/10.1186/s13750-022-00275-x

Feitz, A., Schroder, I., Phillips, F., Coates, T., Negandhi, K., Day, S., Luhar, A., Bhatia, S., Edwards, G., Hrabar, S., Hernandez, E., Wood, B., Naylor, T., Kennedy, M., Hamilton, M., Hatch, M., Malos, J., Kochanek, M., … & Griffith, D. (2018). The Ginninderra CH4 and CO2 release experiment: An evaluation of gas detection and quantification techniques. International Journal of Greenhouse Gas Control, 70, 202–224. https://doi.org/10.1016/j.ijggc.2017.11.018

Firouzi, S., Gholami-Parashkoohi, M., Zamani, D. M., & Ranjber, I. (2022). An investigation of the environmental impacts and energy-economic analysis for sugar beet and sugarcane production systems. Sugar Tech, 1–16. http://dx.doi.org/10.1007/s12355-022-01135-1

Gadal, N., Shrestha, J., Poudel, M. N., & Pokharel, B. (2019). A review on production status and growing environments of rice in Nepal and in the world. Archives of Agriculture and Environmental Science, 4(1), 83–87. https://doi.org/10.26832/24566632.2019.0401013

Gifford, R. M. (2003). Plant respiration in productivity models: Conceptualisation, representation and issues for global terrestrial carbon-cycle research. Functional Plant Biology, 30(2), 171–186. http://dx.doi.org/10.1071/FP02083

Gilbert, N. (2012). One-third of our greenhouse gas emissions come from agriculture. Nature, 31, 10–12. https://doi.org/10.1038/nature.2012.11708

Hannigan, K. (2014). Protection and security in a technologically advanced society: Children and young people’s perspectives [Thesis]. Stirling, Skotlandia: Faculty of Social Sciences, University of Stirling. Retrieved from http://hdl.handle.net/1893/21562

Haque, M. M., Datta, J., Ahmed, T., Ehsanullah, M., Karim, M. N., Akter, M. S., Baazeem, A., Hadifa, A., Ahmed, S., & Sabagh, A. E. L. (2021). Organic amendments boost soil fertility and rice productivity and reduce methane emissions from paddy fields under sub-tropical conditions. Sustainability, 13(6), 3103. https://doi.org/10.3390/su13063103

Huong, N. V., Nguyet, B. T. M., Hung, H. V., Duc, H. M., Chuong, N. V., Tri, D. M., & Hien, P. V. (2022). Economic impact of climate change on agriculture: A case of Vietnam. AgBioForum, 24(1), 1–12. Retrieved from https://mospace.umsystem.edu/xmlui/handle/10355/91382

Kaggle. (2022). Environment impact of food production. Retrieved from https://www.kaggle.com/datasets/selfvivek/environment-impact-of-food-production

Lawlor, D. W., & Mitchell, R. A. C. (1991). The effects of increasing CO2 on crop photosynthesis and productivity: A review of field studies. Plant, Cell & Environment, 14(8), 807–818. https://doi.org/10.1111/j.1365-3040.1991.tb01444.x

Linquist, B., Van Groenigen, K. J., Adviento‐Borbe, M. A., Pittelkow, C., & Van-Kessel, C. (2012). An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology, 18(1), 194–209. http://dx.doi.org/10.1111/j.1365-2486.2011.02502.x

Liu, S., Waqas, M. A., Wang, S. H., Xiong, X. Y., & Wan, Y. F. (2017). Effects of increased levels of atmospheric CO2 and high temperatures on rice growth and quality. PLoS ONE, 12(11), e0187724. https://doi.org/10.1371/journal.pone.0187724

Meier, E. A., Thorburn, P. J., Bell, L. W., Harrison, M. T., & Biggs, J. S. (2020). Greenhouse gas emissions from cropping and grazed pastures are similar: A simulation analysis in Australia. Frontiers in Sustainable Food Systems, 3, 121. http://dx.doi.org/10.3389/fsufs.2019.00121

Naskar, S., Gowane, G. R., & Chopra, A. (2015). Strategies to improve livestock genetic resources to counter climate change impact. In: Sejian, V., Gaughan, J., Baumgard, L., Prasad, C. (eds) Climate Change Impact on Livestock: Adaptation and Mitigation. New Delhi: Springer. https://doi.org/10.1007/978-81-322-2265-1_25

Nutter, D. W., Kim, D. S., Ulrich, R., & Thoma, G. (2013). Greenhouse gas emission analysis for USA fluid milk processing plants: Processing, packaging, and distribution. International Dairy Journal, 31(Supplement 1), S57–S64. https://doi.org/10.1016/j.idairyj.2012.09.011

Poudel, M. P., & Chen, S. E. (2012). Trends and variability of rice, maize, and wheat yields in South Asian countries: A challenge for food security. Asian Journal of Agriculture and Rural Development, 2(4), 584–597. http://dx.doi.org/10.22004/ag.econ.198004

Powlson, D. S., Stirling, C. M., Thierfelder, C., White, R. P., & Jat, M. L. (2016). Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro-ecosystems? Agriculture, Ecosystems & Environment, 220, 164–174. https://doi.org/10.1016/j.agee.2016.01.005

Riya, S., Katayama, M., Takahashi, E., Zhou, S., Terada, A., & Hosomi, M. (2014). Mitigation of greenhouse gas emissions by water management in a forage rice paddy field supplemented with dry-thermophilic anaerobic digestion residue. Water, Air, & Soil Pollution, 225, 2118. http://dx.doi.org/10.1007/s11270-014-2118-3

Sanz-Cobena, A., Lassaletta, L., Aguilera, E., del Prado, A., Garnier, J., Billen, G., Iglesias, A., Sánchez, B., Guardia, G., Abalos, D., Plaza-Bonilla, D., Puigdueta-Bartolomé, I., Moral, R., Galán, E., Arriaga, H., Merino, P., Infante-Amate, J., Meijide, A., & Smith, P. (2017). Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture, Ecosystems & Environment, 238, 5–24. https://doi.org/10.1016/j.agee.2016.09.038

Sapkota, T. B., Jat, M. L., Rana, D. S., Khatri-Chhetri, A., Jat, H. S., Bijarniya, D., Sutaliya, J. M., Kumar, M., Singh, L. K., Jat, R. K., Kalvaniya, K., Prasad, G., Sidhu, H. S., Rai, M., Satyanarayana, T., & Majumdar, K. (2021). Crop nutrient management using Nutrient Expert improves yield, increases farmers’ income and reduces greenhouse gas emissions. Scientific reports, 11, 1702. https://doi.org/10.1038/s41598-020-79883-x

Silva, G. F. P., Pereira, E., Melgar, B., Stojković, D., Sokovic, M., Calhelha, R. C., Pereira, C., Abreu, R. M. V., Ferreira, I. C. F. A., & Barros, L. (2020). Eggplant fruit (Solanum melongena L.) and bio-residues as a source of nutrients, bioactive compounds, and food colorants, using innovative food technologies. Applied Sciences, 11(1), 151. https://doi.org/10.3390/app11010151

Skinner, C., Gattinger, A., Krauss, M., Krause, H. M., Mayer, J., Van Der Heijden, M. G., & Mäder, P. (2019). The impact of long-term organic farming on soil-derived greenhouse gas emissions. Scientific reports, 9, 1702. https://doi.org/10.1038/s41598-018-38207-w

Smith, P. (2015). Malthus is still wrong: We can feed a world of 9–10 billion, but only by reducing food demand. Proceedings of the Nutrition Society, 74(3), 187–190. https://doi.org/10.1017/S0029665114001517

Tajfel, H. (1978). Differentiation between social groups: Studies in the social psychology of intergroup relations. Cambridge, Amerika Serikat: Academic Press. Retrieved from https://psycnet.apa.org/record/1980-50696-000

Ulfat, A., Shokat, S., Li, X., Fang, L., Großkinsky, D. K., Majid, S. A., Roitsch, T., & Liu, F. (2021). Elevated carbon dioxide alleviates the negative impact of drought on wheat by modulating plant metabolism and physiology. Agricultural Water Management, 250, 106804. https://doi.org/10.1016/j.agwat.2021.106804

Valcarcel, J., Reilly, K., Gaffney, M., & O’Brien, N. (2015). Total carotenoids and l-ascorbic acid content in 60 varieties of potato (Solanum tuberosum L.) grown in Ireland. Potato Research, 58(1), 29–41. http://dx.doi.org/10.1007/s11540-014-9270-4

van Loon, M. P., Hijbeek, R., Ten Berge, H. F., De Sy, V., Ten Broeke, G. A., Solomon, D., & van Ittersum, M. K. (2019). Impacts of intensifying or expanding cereal cropping in Sub‐Saharan Africa on greenhouse gas emissions and food security. Global change biology, 25(11), 3720–3730. https://doi.org/10.1111/gcb.14783

Varma, K., & Linn, M. C. (2012). Using interactive technology to support students’ understanding of the greenhouse effect and global warming. Journal of Science Education and Technology, 21(4), 453–464. https://doi.org/10.1007/s10956-011-9337-9

Vetter, S. H., Sapkota, T. B., Hillier, J., Stirling, C. M., Macdiarmid, J. I., Aleksandrowicz, L., Green, R., Joy, E. J. M., Dangour, A. D., & Smith, P. (2017). Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agriculture, Ecosystems & Environment, 237, 234–241. https://doi.org/10.1016/j.agee.2016.12.024

Walling, E., & Vaneeckhaute, C. (2020). Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. Journal of Environmental Management, 276, 111211. http://dx.doi.org/10.1016/j.jenvman.2020.111211

Wang, Y., & Sun, T. (2012). Life cycle assessment of CO2 emissions from wind power plants: Methodology and case studies. Renewable Energy, 43, 30–36. https://doi.org/10.1016/j.renene.2011.12.017

Xiong, C., Yang, D., Xia, F., & Huo, J. (2016). Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China. Scientific Reports, 6, 36912. https://doi.org/10.1038/srep36912

Yamanoshita, M. (2019). IPCC special report on climate change and land. Institute for Global Environmental Strategies. Retrieved from https://www.jstor.org/stable/pdf/resrep22279.pdf

Yan, M., Cheng, K., Luo, T., Yan, Y., Pan, G., & Rees, R. M. (2015). Carbon footprint of grain crop production in China–based on farm survey data. Journal of Cleaner Production, 104, 130–138. https://doi.org/10.1016/j.jclepro.2015.05.058

Zheng, B., Chevallier, F., Ciais, P., Yin, Y., Deeter, M. N., Worden, H. M., Wang, Y., Zhang, Q., & He, K. (2018). Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environmental Research Letters, 13(4), 044007. https://doi.org/10.1088/1748-9326/aab2b3

Zhou, R., Kong, L., Yu, X., Ottosen, C. O., Zhao, T., Jiang, F., & Wu, Z. (2019). Oxidative damage and antioxidant mechanism in tomatoes responding to drought and heat stress. Acta Physiologiae Plantarum, 41, 20. https://doi.org/10.1007/s11738-019-2805-1

Refbacks

  • There are currently no refbacks.