The Utilization of Coconut Coir as Supplementary Feed for Beef Cattle Production

Limbang Kustiawan Nuswantara, Sunarso Sunarso, Mukh Arifin, Agus Setiadi

Abstract

High feed price is a major problem in the production of beef cattle. Therefore, this study aims to determine coconut coir's technical and economic potential for beef cattle feed. This is an in vivo and in vitro study that involved 95 days trial period and 16 male Brahman crossbreed cattle weighing 134±12.1 kg. The coconut coir was fermented using buffalo rumen liquid and was termed fermented coconut coir (FCC). A randomized block design was used in this research, including four feed treatments, namely complete feed D1 using 15% FCC, D2 using 20% FCC, D3 using 25% FCC and D4 using 30% FCC. The parameters observed were technical performance (protein, dry and organic matter intake), ruminal fermentability, purine derivatives and economic performance. The data were analyzed using analysis of variance and Duncan's multiple range test for posthoc multiple comparisons. The results showed that the intake of beef cattle feed D1, D2 and D3 was higher than D4. Furthermore, the digestibility of D1, D2 and D4 was higher than D3. The purine derivatives of D2 were the highest but not significantly different (P > 0.05) from D1 and D4. In addition, the ruminal fermentability was not significantly different (P > 0.05) among treatments. Moreover, the beef cattle feed on D2 had the best economic performance. The performance results showed that ruminal fermentability, purine derivatives and economic performance of D2 (20% FCC) gave the best results but were not statistically different (P > 0.05) from other variables. Conclusively, coconut coir can be used as beef cattle feed without causing health problems.

Keywords

coconut coir; economic performance; purine derivatives; ruminal fermentability; technical performance

Full Text:

PDF

References

Alnouss, A., Parthasarathy, P., Shahbaz, M., Al-Ansari, T., MacKey, H., & McKay, G. (2020). Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS. Applied Energy, 261, 114350. https://doi.org/10.1016/j.apenergy.2019.1144350

Amaryanti, A. K., Nuswantara, L. K., & Achmadi, J. (2015). Combination of soybean meal and hibiscus tiliaceus leaf in the goat diet, effect of some parameters of carbohydrates metabolism. Journal Indonesian Tropical Animal Agriculture, 40(3), 153–158. https://doi.org/10.14710/jitaa.40.3.153-158

AOAC. (2012). Official methods of analysis of the association of official analytical chemists. Association of Official Analytical Chemist. Retrieved from https://scholar.google.co.id/scholar?cites=17848862564178015747&as_sdt=2005&sciodt=0,5&hl=en

Ariyani, S. A., Nuswantara, L. K., Pangestu, E., Wahyono, F., & Akhmad. J. (2016). Parameters of protein metabolism in goats fed diets with different portion of sugarcane bagasse. Journal Indonesian Tropical Animal Agriculture, 39(2), 111–116. https://doi.org/10.14710/jitaa.39.2.111-116

Asadu, C. O., Anthony, E. C., Elijah, O. C., Ike, I. S., Onoghwarite, O. E., & Okwudili, U. E. (2021). Development of an adsorbent for the remediation of crude oil polluted water using stearic acid grafted coconut husk (Cocos nucifera) composite. Applied Surface Science Advances, 6, 100179. http://dx.doi.org/10.1016/j.apsadv.2021.100179

Bello, O. S., Moshooda, M. A., Ewetumoa, B. A., & Afolabi, I. C. (2020). Ibuprofen removal using coconut husk activated Biomass. Chemical Data Collections, 29, 100533. https://doi.org/10.1016/j.cdc.2020.100533

Cui, X., Tang, C., & Zhang, Q. (2018). A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. Advance Energy Materials, 8(22), 1800369. https://doi.org/10.1002/aenm.201800369

Dolewikou, R. L., Sumekar, W., & Setiadi, A. (2016). The profitability analysis of dairy cattle business on the group of dairy farmers in West Ungaran District, Semarang Regency. Journal. Indonesian Tropical Animal Agriculture, 41(4), 216–223. https://doi.org/10.14710/jitaa.41.4.216-223

Gilliam, F. S. (2016). Forest ecosystems of temperate climatic regions: from ancient use to climate change. New Phytologist, 212(4), 871–887. https://doi.org/10.1111/nph.14255

Hartadi, H., Reksohadiprodjo, S., & Tillman, A. D. (1993). Tabel komposisi pakan untuk Indonesia. Gadjah Mada University Press. Retrieved from https://scholar.google.co.id/scholar?cites=12965038710492974243&as_sdt=2005&sciodt=0,5&hl=id

Kairupan, A. N., Silondae, H., Salamba, H. N., & Mubarak, H. (2021). Support for animal feed innovation technology in the North Sulawesi border area. IOP Conference Series: Earth and Environmental Science, 807, 032050. http://dx.doi.org/10.1088/1755-1315/807/3/032050

Kondo, M.,. Hirano Y, Ikai, N., Kita, K.,. Jayanegara, A., & Yokota, H. (2014). Assessment of anti-nutritive activity of tannins in tea by-products based on in vitro ruminal fermentation. Anim Bioschi, 27 (11), 1571–1576. https://doi.org/10.5713/ajas.2014.14204

Kumar, A., Gautam, A., & Dutt, D. (2016). Biotechnological transformation of lignocellulosic biomass in to industrial products: An overview. Advances in Bioscience and Biotechnology, 7(3), 149–168. http://dx.doi.org/10.4236/abb.2016.73014

Liang, J. B., Matsumoto. M., & Young, B. A. (1994). Purine derivate excretion and ruminal microbial yield in Malaysian cattle and buffalo. Animal Feed Science and Technology, 47, 189–199. https://doi.org/10.1016/0377-8401(94)90123-6

Mariyono, J., Kuntariningsih, A., Suswati E., & Kompas, T. (2018). Quantity and monetary value of agrochemical pollution from intensive farming in Indonesia. Management of Environmental Quality, 29(4), 759–779. https://doi.org/10.1108/MEQ-03-2017-0030

Mariyono, J. (2015). Green revolution and wetland-linked technological change of rice agriculture in Indonesia. Management of Environmental Quality, 26(5), 683–700. https://doi.org/10.1108/MEQ-07-2014-0104

Mbiriri, D., Oh, S. J. & Choi, N.-J. (2012). Effect of different silages for TMR on in vitro rumen simulative fermentation. Journal of the Korean Society of Grassland and Forage Science, 32(4), 379–386. http://dx.doi.org/10.5333/KGFS.2012.32.4.379

Miguel, M., Mamuad, L., Ramos, S., Ku, M. J., Jeong, C. D., Kim, S. H., Cho, Y. I., & Lee, S. S. (2021). Effects of using different roughages in the total mixed ration inoculated with or without coculture of Lactobacillus acidophilus and Bacillus subtilis on in vitro rumen fermentation and microbial population. Animal Bioscience, 34(4), 642–651. http://dx.doi.org/10.5713/ajas.20.0386

Muzaki, M. D. R., Sunarso, & Agus, S. (2020). Analisis potensi sabut kelapa serta strategi penggunaannya sebagai bahan baku pakan ternak ruminansia. Livestock and Animal Research, 18(3), 274–288. https://doi.org/10.20961/lar.v18i3.46001

Nuswantara, L. K., Sunarso, M. A. & Setiadi, A. (2020). Komponen serat sabut kelapa yang difermentasi menggunakan mikroba pencerna serat dari rumen kerbau. Jurnal Agripet, 20(1), 1–8. https://doi.org/10.17969/agripet.v20i1.15545

Orskov, E. R. (1982). Protein nutrition in ruminant. Academic Press. Retieved from https://scholar.google.com/scholar?cluster=3983992450355219735&hl=id&as_sdt=2005&sciodt=0,5

Owens F. N., & Basalan, M. (2016). Ruminal fermentation. in: millen D., De Beni Arrigoni M., Lauritano Pacheco R. (eds) Rumenology. Springer, Cham. https://doi.org/10.1007/978-3-319-30533-2_3

Rahayu, A. G., Utama, P. S., Nurulita, Y., Miranti, M., & Nugraha, T. T. (2019). Surfactant, nitrogen and carbon media optimization for Trichoderma asperellum LBKURCC1 laccase production by flask solid state fermentation of rice straw. Journal of Physics: Conference Series, 1351, 012030. https://doi.org/10.1088/1742-6596/1351/1/012030

Ramesh, S.V., Krishnan,V., Praveen S., & Hebbar, K. B. (2021). Dietary prospects of coconut oil for the prevention and treatment of alzheimer’s disease (AD): A review of recent evidences. Trends in Food Science and Technology, 112, 201–211. https://doi.org/10.1016/j.tifs.2021.03.046

Santoso, S. I., Suprijatna, E., Setiadi, A., & Susanti, S. (2016). Effect of duck diet supplemented with fermented seaweed wastes on carcass characteristics and production efficiency of indigenous Indonesian ducks. Indian Journal of Animal Research, 50(5), 699–704. http://dx.doi.org/10.18805/ijar.11160

Santoso, S. I., Susanti, S., & Setiadi, A. (2017). Economic analysis of male broiler chickens fed diets supplemented with Salvinia molesta. International Journal of Poultry Science, 16(6), 233–237. https://dx.doi.org/10.3923/ijps.2017.233.237

Satter, L. D., & Slyter, L. (1974). Effect of ammonia concentration on rumen microbial protein production in vitro. British Journal of Nutrition, 32(2), 199-208. https://doi.org/10.1079/bjn19740073

Shamim, M., Hussain, M. S., & Mahin, A. A. (2016). Solid-state fermentation of coconut coir by pleurotus sajor-caju increases the anti-oxidant properties and nutritional value. Biotechnology, 15(6), 141–147. http://dx.doi.org/10.3923/biotech.2016.141.147

Singh, M., Sharma, K., Dutta, N., Singh, P., Verma, A., & Mehra, U. (2007). Estimation of rumen microbial protein supply using urinary purine derivatives excretion in crossbred calves fed at different levels of feed intake. Ruminant Nutrition and Forage Utilization, 20(10), 1567–1574. https://doi.org/10.5713/ajas.2007.1567

Tayengwa, T., Chikwanha, O. C., Dugan, M. E. R., Mutsvangwac, T., & Mapiye, C. (2020). Influence of feeding fruit by-products as alternative dietary fibre sources to wheat bran on beef production and quality of angus steers. Meat Science, 161, 107969. https://doi.org/10.1016/j.meatsci.2019.107969

Tilley, J. M. A., & Terry, R. A. (1963). A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science, 18(2), 104–111. http://dx.doi.org/10.1111/j.1365-2494.1963.tb00335.x

Tillman A. D., Hartadi, H., Reksohadiprojo, S., Prawirokusumo, S., & Lebdosoekojo, S. (1998). Ilmu makanan ternak dasar. Cetakan ke-6. Gadjah Mada University Press. Retrieved from https://scholar.google.com/scholar?cluster=15497549145472889805&hl=id&as_sdt=2005&sciodt=0,5

Uwineza, C., Sar, T., Mahboubi, A., & Taherzadeh, M. J. (2021). Evaluation of the cultivation of Aspergillus oryzae on organic waste-derived vfa effluents and its potential application as alternative sustainable nutrient source for animal feed. Sustainability, 13(22), 12489. https://doi.org/10.3390/su132212489

Verma, R., Maji, P. K., & Sarkar, S. (2021). Comprehensive investigation of the mechanism for Cr(VI) removal from contaminated water using coconut husk as a biosorbent. Journal of Cleaner Production, 314, 128117. https://doi.org/10.1016/j.jclepro.2021.128117

Wijaya, A. F., Kuntariningsih,A., Sarwono, S., & Suryono, A. (2021a). Malnutrition mitigation and community empowerment through the sustainable food reserve programme in Indonesia. Development in Practice, 31(1), 37–48. https://doi.org/10.1080/09614524.2020.1782845

Wijaya, A. F., Kuntariningsih, A., Sarwono, S., & Suryono, A. (2021b). Role and contribution of vegetables in mitigating malnutrition through a sustainable food reserve program. International Journal of Vegetable Science, 27(1), 65–75. https://doi.org/10.1080/19315260.2019.1703872

Xue, Z., Mu, L., Cai, M., Zhang, Y., Wanapat, M., & Huang, B. (2020). Effect of using banana by-products and other agricultural residues for beef cattle in Southern China. Tropical Animal Health and Production, 52, 489–496. https://doi.org/10.1007/s11250-019-02031-9

Zafar, S. (2021). Coconut husk: Energy potential of coconut biomass. BioEnergy Consult. Retrieved from https://www.bioenergyconsult.com/coconut-biomass/

Refbacks

  • There are currently no refbacks.