Effects of Planting Time and Cultivar on Leaf Physiology and Seed Yield of Soybean (Glycine max. (L.) Merr)

Eko Srihartanto, Didik Indradewa

Abstract

The use of adaptive soybean cultivars with appropriate planting time on dry land can enhance the improvement of soybean growth and yield. This study aimed to determine changes in leaf physiological character and soybean yield as affected by different planting time and superior soybean cultivars. The experiment was conducted on the dry land of Inceptisol in Gunungkidul from November 2018 to March 2019. The experiment was arranged in a Split Plot Design with the main plot arranged in a Randomized Complete Block Design (RCBD) with three (3) replications. The main plots consisted of three planting times, i.e. early planting time–Pranoto Mongso, midldle planting time–Farmer Method and late planting–Katam Terpadu. The subplots consisted of four soybean cultivars, namely Anjasmoro, Argomulyo, Grobogan and Dega-1. The fertilizers used were organic fertilizer (2 t ha-1), Urea (50 kg ha-1) and KCl (50 kg ha-1). The results showed that the treatment of planting time and cultivar could increase leaf physiological activity, particularly the number of leaves, total leaf area, leaf area index and plant growth rate. Early planting time–Pranoto Mongso and middle planting time–Farmers Method produced higher plant dry weight (20.11 g; 24.21 g) and seed yields per plant (29.11 g; 26.75 g) than late planting (Katam Terpadu) did (20.30 g). Meanwhile, cultivar Dega-1 had higher seed yields per plant (30.11 g) than cultivar Grobogan (28.39 g), Argomulyo (23.35 g) and Anjasmoro (19.79 g) did.

Keywords

cultivars; leaf physiology; planting time; seed yields

Full Text:

PDF

References

Alam, T. (2015). Optimasi Pengeloaan Sistem Agroforestri Cengkeh, Kakao, Kapulaga di Pegunungan Menoreh. (Thesis). Universitas Gadjah Mada Yogyakarta. Retrieved from Link

BALITKABI. (2016). Deskripsi Varietas Unggul Kacang-kacangan dan Umbi-umbian. Balai Penelitian Tanaman Aneka Kacang dan Umbi. Badan Penelitian dan Pengembangan Pertanian, Kementerian Pertanian. Retrieved from Link

Beuerlein, J. E., & Pendleton, J. W. (1971). Photosynthetic rates and light saturation curves of individual Soybean leaves under field condition. Crop Science, 11 (2), 217-219. Crossref

Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential_Are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56(11), 1159–1168. Crossref

Boote, J.R., Stansell, A.M., S. & J. F. S. (1982). Irrigation, water use and water relations. In: H.E. Patte & C.T Young (Eds.) Peanut Science and Technology. APPRES. Texas. USA.

Budiasa, I. W. (2011). Pertanian berkelanjutan : Teori dan Pemodelan. Denpasar : Udayana University Press.

Clarke, J. M. (1986). Effect Of Leaf Rolling On Leaf Water Loss In Triticum spp. Can. J. Plant Sci. 66(4), 885–891. Crossref

Da-Yong, L., Zhi-an, Z., Dian-jun, Z., Li-yan, J., & Yuan-li, W. (2012). Comparison of Net Photosynthetic Rate in Leaves of Soybean with Different Yield Levels. Journal of Northeast Agricultural University, 19(3), 14–19. Crossref

Devi, J. M., Sinclair, T. R., Chen, P., & Carter, T. E. (2014). Evaluation of Elite Southern Maturity Soybean Breeding Lines for Drought-Tolerant Traits. Agron. J., 106(6), 1947–1954. Crossref

Doorenbos, J., & Kassam, A. (1979). Yield Response to Water FAO Irrigation and Drainage. Paper No. 33. FAO, Rome.

Fagi, A. M., & Tangkuman, F. (1985). Pengelolaan air untuk kedelai. Pusat Penelitian dan Pengembangan Tanaman Pangan. Retrieved from Badan Penelitian dan Pengembangan Pertanian. Bogor.

Gardner, F. P., Pearce, R. B., & Mitchell, R. L. (1991). Physiology of Crop Plant (Fisiologi Tanaman Budidaya, alih bahasa: H. Susilo). UI-Press. Jakarta.

Gilbert, M. E., Holbrook, N. M., Zwieniecki, M. A., Sadok, W., & Sinclair, T. R. (2011). Field confirmation of genetic variation in soybean transpiration response to vapor pressure deficit and photosynthetic compensation. Field Crops Research, 124(1), 85–92. Crossref

Goodger, J. Q. D., & Schachtman, D. P. (2015). Re-examining the role of ABA as the primary long-distance signal produced by water-stressed roots. Plant Signaling and Behaviour, 5(10), 1298–1301. Crossref

Jeong, N., Suh, S. J., Kim, M., Lee, S., Moon, J., Kim, H. S., & Jeong, S. (2012). Ln Is a Key Regulator of Lea fl et Shape and Number of Seeds per Pod in Soybean. The Plant Cell, 24(12), 4807–4818. Crossref

Jha, P. K., Kumar, S. N., & Ines, A. V. M. (2018). Responses of soybean to water stress and supplemental irrigation in upper Indo-Gangetic plain : Field experiment and modeling approach. Field Crops Research, 219(15), 76–86. Crossref

Kholova, M. J. (2010). Understanding of terminal Drougt Tolerance Mechanisms in Perarl Millet (Pennissetum glaucum (L) R. Br.). Faculty of Science. Charles University in Prague. The Chech Republic. Retrieved from Link

Lehmann, N., Finger, R., Klein, T., Calanca, P., & Walter, A. (2013). Adapting crop management practices to climate change : Modeling optimal solutions at the field scale. Agricultural Systems, 117, 55–65. Crossref

Leopard A. C., & Kriedemann. (1975). Plant Growth and Development. Tata Mc. Grow Hill Pub.Co.Ltd., New Delhi.

Levitt, J. (1980). Responses of Plant to Environmental Stress. Volume II. Second Edition. Academic Press. New York. Retrieved from Link

Liu, X., Jin, J., Herbert, S. J., Zhang, Q., & Wang, G. (2005). Yield components, dry matter, LAI and LAD of soybeans in Northeast China. Field Crops Research, 93(1), 85–93. Crossref

Ludwig, F., Biemans, H., Jacobs, C., Supit, I., Van Diepen, C. A., Fawell, J., Capri, E. & Steduto, P. (2011). Water Use of Oil Crops: Current Water Use and Future Outlooks. ILSI Europe aisbl. Retrieved from Link

Manavalan, L. P., Guttikonda, S. K., Phan Tran, L.-S., & Nguyen, H. T. (2009). Physiological and Molecular Approaches to Improve Drought Resistance in Soybean. Plant and Cell Physiology, 50(7), 1260–1276. Crossref

Nio, S. A., & Yunia, B. (2011). Konsentrasi Klorofil Daun Sebagai Indikator Kekurangan Air pada Tanaman. Jurnal Ilmiah Sains, 2, 167–173. Retrieved from Link

Nugrahaeni, N., Sundari, T., & Santoso, G. A. (2012). Hasil dan Komponen Hasil Galur-galur Kedelai Berumur Genjah di Lahan Kering Masam Lampung. In Seminar Nasional Hasil Penelitian Tanaman Aneka Kacang dan Umbi 15 November 2011 (p. 11). Balai Penelitian Tanaman Aneka Kacang dan Umbi (Balitkabi) Malang, Pusat Penelitian dan Pengembangan Tanaman Pangan. Retrieved from Link

Nurhayati. (2010). Analisis karakteristik iklim untuk optimalisasi produksi kedelai di Propinsi Lampung, Laporan akhir program insentif PKPP Ristek 2010. Jakarta. Retrieved from Link

Oya, T., Nepomuceno, A. L., Neumaier, N., Renato, J., Farias, B., Tobita, S., & Ito, O. (2004). Drought Tolerance Characteristics of Brazilian Soybean Cultivars — Evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field — Drought Tolerance Characteristics of Brazilian Soybean Cultivars ź Evaluation and. Plant Production Science, 7(2), 129–137. Crossref

Purwanto, & Cahyono, S. A. (2012). Identifikasi Kerentanan Sosial Ekonomi kelembagaan untuk Pengelolaan DAS Tulis (Dataran Tinggi Dieng). In Prosiding Seminar Nasional Pengeloaan Sumberdaya Alam dan Lingkungan. Semarang, 11 September 2012. Retrieved from Link

PUSDATIN KEMENTAN. (2016). Outlook Komoditas Pertanian Sub Sektor Tanaman Pangan Kedelai. Pusat Data dan Sistem Informasi Pertanian Kementerian Pertanian. Retrieved from Link

Putra, F. P. (2015). Pertumbuhan dan Hasil Tanaman serta Komposisi Gulma di berbagai Proporsi Populasi Pada Sistem Tumpangsari Padi Gogo + Kedelai di Lahan Pasir Pantai. (Thesis). Universitas Gadjah Mada. Retrieved from Link

Reijntjes, C., Haverkort, B., & WatersBayer, A. (1999). Pertanian Masa Depan Pengantar Untuk Pertanian Berkelanjutan dengan Input Luar Rendah (Terjemahan Bahasa Indonesia oleh Y. Sukoco). Penerbit Mitra Tani, ILEIA dan Kanisius.

Sabban, H. (2012). Pengaruh Pengurangan Anak Daun terhadap karakter Fisiologis, Pertumbuhan dan Hasil beberapa varietas Kedelai. (Thesis). Universitas Gadjah Mada. Retrieved from Link

Saruhan, N., Terzi, R., Saglam, A., & Kadioglu, A. (2009). The Relationship between Leaf Rolling and Ascorbate-Glutathione Cycle Enzymes in Apoplastic and Symplastic Areas of Ctenanthe setosa Subjected to Drought Stress. Biological Research, 42(3), 315–326. Retrieved from Link

SAS Institute Inc. (1985). SAS User’s Guides: statistic, version 5 edition. Cary, NC: SAS Institute Inc.

Sentelhas, P. C., Battisti, R., Câmara, G. M. S., Farias, J. R. B., & Hampf, A. C. (2015). The soybean yield gap in Brazil – magnitude, causes and possible solutions for sustainable production. J. Agric. Sci., 153(8), 1394–1411. Crossref

Sheaffer, C. C., & Moncada, K. M. (2009). Introduction to Agronomy: Food, Crops and Environment. Canada: Nelson Education, Ltd.

Shibles, R. M., & Weber, C. R. (1965). Leaf area, solar radiation, interception and dry matter production by soybeans. Crop Sci., 5, 575–578. Retrieved from Link

Stoskopf, N. (1981). Understanding Crop Production. Reston Publishing Company. Inc. Virginia. Retrieved from Link

Su, L., Wang, Q., Wang, C., & Shan, Y. (2015). Simulation Models of Leaf Area Index and Yield for Cotton Grown with Different Soil Conditioners. PLOS ONE, 10(11), 1–19. Crossref

Sudarsono, & Widoretno, W. (2003). Pengaruh Cekaman Kekeringan Pada Fase Pertumbuhan Generatif Terhadap Pertumbuhan dan Hasil Kedelai Yang Berbeda Toleransinya Terhadap Stres. Jurnal Penelitian Pertanian., 22(2).

Tekalign, T., & Hammes, P. S. (2005). Growth and productivity of potato as influenced by cultivar and reproductive growth II. Growth analysis, tuber yield and quality. Scientia Horticulturae, 105, 29–44. Crossref

Tohari. (2017a). Geometri dan Sistem Pertanaman. In Tohari (Ed.), Aspek Dasar Agronomi Berkelanjutan (Cetakan Pe, pp. 199–245). Yogyakarta: Gadjah Mada University Press.

Tohari. (2017b). Tanaman:Transformer Energi Matahari. In Tohari (Ed.), Aspek Dasar Agronomi Berkelanjutan (Cetakan I, pp. 37–83). Gadjah Mada University Press.

Turner, N. (1997). Further progress in crop water raltion. Advance Agronomy 58. Crossref

Vitousex, P. M., Cassman, K., Cleveland, C., Crews, T., Field, C. B., Grimm, N. B., Howart, R.W., Marino, R., Martinelli, L., Rastetter, E.B., & Sprent, J. I. (2002). Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry, 57(1), 1–45. Crossref

Wijewardana, C., Reddy, Raja, K., & Bellaloui, N. (2018). Soybean Seed Physiology, Quality, and Chemical Composition under Soil Moisture Stress. Food Chemistry, 278, 92-100. Crossref

Yordanov, I., Vellikova, V., & Tsonev, T. (2000). Plant Responses to Drought, Acclimation, and Stress Tolerance. Photosynthetica, 38(1), 171–186. Crossref

Zandstra, H. G. (1982). Effect of soil moisture and texture on growth of upland crops wetland rice. Inst. Los Banos. Philiphines.

Zelalem, A., Tekalign, T., & Nigussie, D. (2009). Response of potato (Solanum tuberosum L.) to Different Rates of Nitrogen and Phosphorus Fertilization On Vertisols at Debre Berhan, In the Central Highlands of Ethiopia. Afr. J. Pl. Sci., 3(2), 16–24. Crossref

Zhu, X. C., Song, F. B., Liu, S. Q., Liu, T. D., & Zhou, X. (2012). Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ, 58(4), 186–191. Crossref

Zou, L., Sun, X., Zhang, Z., Liu, P., Wu, J., Tian, C., Qiu, J., & Lu, T. (2011). Leaf Rolling Controlled by the Homeodomain Leucine Zipper Class IV Gene Roc5 in Rice1. Plant Physiology, 156(7), 1589–1602. Crossref

Refbacks

  • There are currently no refbacks.