The Efficiency of Cokriging Spatial Interpolation to Estimate the Electrical Conductivity of Saturated Paste Extract (ECₑ) Using Soil to Water Ratios

Koddam Rukadi, Porntip Phontusang, Anongnat Sriprachote

Abstract

Accurate assessment of soil salinity is essential for managing salt-affected soils and sustaining agricultural productivity. This study evaluated the potential of cokriging spatial interpolation for estimating the electrical conductivity of saturated paste extract (ECₑ), using soil electrical conductivity (EC) measured at 1:2.5 and 1:5 soil-to-water ratios. The objectives included identifying suitable scatter plot and cross-variogram models and assessing mapping accuracy. A total of 300 topsoil samples (0 to 30 cm) were collected from three salt-affected soil classes in Muang Pia Sub-district, Khon Kaen Province, Northeastern Thailand. Spatial modelling and cross-variogram analyses were performed using GS+ software to evaluate estimation accuracy across different sample sizes. The results showed that EC measurements at a 1:5 ratio exhibited the strongest correlation with  across all soil classes, with coefficient of determination (R2) values reaching 0.98 in Class 1 and Class 2, and 0.85 in Class 3, despite a minimum sample size (n = 25). Gaussian and spherical models best described these relationships. Higher R2 values were consistently associated with lower mean error (ME) and root mean square error (RMSE), in almost all sample sizes and classes, indicating the robustness and reliability of the model across varying salinity conditions. Larger sample sizes (n = 100) yielded more consistent estimation performance, while smaller sample sizes maintained acceptable accuracy, particularly for EC 1:5. This study indicates that soil EC water ratios, especially 1:5, can serve as practical surrogates for ECₑ estimation using cokriging spatial interpolation. The proposed approach offers a cost-effective solution for salinity mapping in salt-affected soil areas, with implications for soil monitoring, land management, and sustainable agriculture under limited sampling conditions.

Keywords

digital soil mapping; Northeast Thailand; salt-affected soils; soil water ratios; spatial variability

Full Text:

PDF

References

Abdelaal, S. M. S., Moussa, K. F., Ibrahim, A. H., Mohamed, E. S., Kucher, D. E., & Al-Faraj, M. K. (2021). Mapping spatial management zones of salt-affected soils in arid region: A case study in the east of the Nile Delta, Egypt. Agronomy, 11(12), 2510. https://doi.org/10.3390/agronomy11122510

Bogunovic, I., Pereira, P., & Brevik, E. C. (2017). Spatial distribution of soil chemical properties in an organic farm in Croatia. Science of the Total Environment, 584–585, 535–545. https://doi.org/10.1016/j.scitotenv.2017.01.062

Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x

Chi, C. M., & Wang, Z-C. (2009). Characterizing salt-affected soils of Songnen Plain using saturated paste and 1:5 soil-to-water extraction methods. Arid Land Research and Management, 24(1), 1–11. https://doi.org/10.1080/15324980903439362

Clark, I., & Harper, W. V. (2007). Practical geostatistics. Journal of the Royal Statistical Society. Series A (General), 144(4), 537. https://doi.org/10.2307/2981833

Corwin, D. L., & Yemoto, K. (2020). Salinity: Electrical conductivity and total dissolved solids. Soil Science Society of America Journal, 84(5), 1442–1461. https://doi.org/10.1002/saj2.20154

Daneshvar, S., Mosaddeghi, M. R., & Afyuni, M. (2024). Effect of biochar and hydrochar of pistachio residues on physical quality indicators of a sandy loam soil. Geoderma Regional, 36, e00740. https://doi.org/10.1016/j.geodrs.2023.e00740

Gee, G. W., & Or, D. (2002). 2.4 particle-size analysis. Methods of Soil Analysis: Part 4 Physical Methods, 5.4, pp. 255–293. Madison, WI: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.4.c12

Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press. https://doi.org/10.1093/oso/9780195115383.001.0001

Gozukara, G., Altunbas, S., Dengiz, O., & Adak, A. (2022). Assessing the effect of soil to water ratios and sampling strategies on the prediction of EC and pH using pXRF and Vis-NIR spectra. Computer and Electronics in Agriculture, 203(11), 107459. https://doi.org/10.1016/j.compag.2022.107459

He, Y., DeSutter, T., Hopkins, D., Jia, X., & Wysocki, D. A. (2013). Predicting ECe of the saturated paste extract from value of EC1:5. Canadian Journal of Soil Science, 93(5), 585–594. https://doi.org/10.4141/CJSS2012-080

He, Y., DeSutter, T., Prunty, L., Hopkins, D., Jia, X., & Wysocki, D. A. (2012). Evaluation of 1:5 soil to water extract electrical conductivity methods. Geoderma, 185–186, 12–17. https://doi.org/10.1016/j.geoderma.2012.03.022

Hossen, B., Yabar, H., & Faruque, M. J. (2022). Exploring the potential of soil salinity assessment through remote sensing and GIS: Case study in the coastal rural areas of Bangladesh. Land, 11(10), 1784. https://doi.org/10.3390/land11101784

Iwai, C. B., Oo, A. N., & Topark-ngarm, B. (2012). Soil property and microbial activity in natural salt affected soils in an alternating wet-dry tropical climate. Geoderma, 189–190, 144–152. https://doi.org/10.1016/j.geoderma.2012.05.001

John, K., Agyeman, P. C., Kebonye, N. M., Isong, A. I., Ayito, E. O., & Ofem, K. I. (2021). Hybridization of cokriging and gaussian process regression modelling techniques in mapping soil sulphur. Catena, 206, 105534. https://doi.org/10.1016/j.catena.2021.105534

Kargas, G., Londra, P., & Sgoubopoulou, A. (2020). Comparison of soil EC values from methods based on 1:1 and 1:5 soil to water ratios and ECe from saturated paste extract based method. Water, 12(4), 1010. https://doi.org/10.3390/W12041010

Khanh, P. T., Pramanik, S., & Ngoc, T. T. H. (2024). Soil permeability of sandy loam and clay loam soil in the paddy fields in An Giang Province in Vietnam. Environmental Challenges, 15, 100907. https://doi.org/10.1016/j.envc.2024.100907

Knotters, M., Brus, D. J., & Oude Voshaar, J. H. (1995). A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations. Geoderma, 67(3–4), 227–246. https://doi.org/10.1016/0016-7061(95)00011-C

Leksungnoen, N., Andriyas, T., & Andriyas, S. (2018). ECe prediction from EC1:5 in inland salt-affected soils collected from Khorat and Sakhon Nakhon basins, Thailand. Communications in Soil Science and Plant Analysis, 49(21), 2627–2637. https://doi.org/10.1080/00103624.2018.1524900

Li, J., Pu, L., Han, M., Zhu, M., Zhang, R., & Xiang, Y. (2014). Soil salinization research in China: Advances and prospects. Journal of Geographical Sciences, 24(5), 943–960. https://doi.org/10.1007/s11442-014-1130-2

Li, L., Lu, J., Wang, S., Ma, Y., Wei, Q., Li, X., & Cong, R. (2016). Methods for estimating leaf nitrogen concentration of winter oilseed rape (Brassica napus L.) using in situ leaf spectroscopy. Industrial Crops and Products, 91, 194–204. https://doi.org/10.1016/j.indcrop.2016.07.008

López-Granados, F., Jurado-Expósito, M., Atenciano, S., García-Ferrer, A., Sánchez De La Orden, M., & García-Torres, L. (2002). Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil, 246(1), 97–105. https://doi.org/10.1023/A:1021568415380

Lv, Z. Z., Liu, G. M., Yang, J. S., Zhang, M. M., & He, L. D. (2013). Spatial variability of soil salinity in Bohai Sea coastal wetlands, China: Partition into four management zones. Plant Biosystem, 147(4), 1201–1210. https://doi.org/10.1080/11263504.2013.861531

Marchetti, A., Piccini, C., Francaviglia, R., & Mabit, L. (2012). Spatial distribution of soil organic matter using geostatistics: A key indicator to assess soil degradation status in Central Italy. Pedosphere, 22(2), 230–242. https://doi.org/10.1016/S1002-0160(12)60010-1

Matthees, H. L., He, Y., Owen, R. K., Hopkins, D., Lee, J., Clay, D. E., … & Malo, D. D. (2017). Predicting soil electrical conductivity of the saturation extract from a 1:1 soil to water ratio. Communications in Soil Science and Plant Analysis, 48(18), 2148–2154. https://doi.org/10.1080/00103624.2017.1407780

Mitsuchi, M., Wichaidit, P., & Jeungnijnirund, S. (1986). Outline of soils of the northeast plateau, Thailand: Their characteristics and constraints. Technical paper, No. 1, pp. 80. Khon Kaen Province, Thailand: Agricultural Development Research Center in Northeast. Retrieved from https://books.google.co.id/books/about/Outline_of_Soils_of_the_Northeast_Platea.html?id=-n4_AAAAYAAJ&redir_esc=y

Miyamoto, S., Chacon, A., Hossain, M., & Martinez, I. (2005). Soil salinity of urban turf areas irrigated with saline water: I. Spatial variability. Landscape and Urban Planning, 71(2–4), 233–241. https://doi.org/10.1016/j.landurbplan.2004.03.006

Muang Pia Sub-district. (2022). Muang Pia Subdistrict Administration Organization. Retrieved from https://www.muangpere.go.th/data.php?content_id=2

Or, Y. M. (2010). A study in determining the sample size in geostatistics. Alberta, Canada: University of Alberta. https://doi.org/10.7939/R3SC96

Phontusang, P., Katawatin, R., Pannangpetch, K., & Lerdsuwansri, R. (2017). Sampling strategies for geostatistical analyses of field-scale spatial variability of electrical conductivity in inland salt-affected soils. International Journal of Geoinformatics, 13(2), 71–84. Retrieved from https://journals.sfu.ca/ijg/index.php/journal/article/view/1036

Phontusang, P., Katawatin, R., Pannangpetch, K., Lerdsuwansri, R., Kingpaiboon, S., & Wongpichet, K. (2018). Field-scale spatial variability of electrical conductivity of the inland, salt-affected soils of Northeast Thailand. Walailak Journal of Science and Technology, 15(5), 341–355. https://doi.org/10.48048/wjst.2018.3474

Plaster, E. J. (2013). Soil Science and Management. Boston: Cengage Learning. Retrieved from https://books.google.co.th/books?id=zeoWAAAAQBAJ

Qadir, M., Noble, A. D., Schubert, S., Thomas, R. J., & Arslan, A. (2006). Sodicity-induced land degradation and its sustainable management: Problems and prospects. Land Degradation and Development, 17(6), 661–676. https://doi.org/10.1002/ldr.751

Qi, W., Zhang, Z., Wang, C., & Huang, M. (2021). Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation. Agricultural Water Management, 248, 106756. https://doi.org/10.1016/j.agwat.2021.106756

Rhoades, J. D. (1982). Soluble salts. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2.2, Second Edition, pp.167–179. https://doi.org/10.2134/agronmonogr9.2.2ed.c10

Robertson, G. P. (2008). GS+: Geostatistics for Environmental Scientists, Second Edition. https://doi.org/10.1002/9780470517277.index

Rukadi, K., Phontusang, P., & Sriprachote, A. (2025). Soil ECe prediction from different EC water ratio and sample sizes in salt-affected soils. EnvironmentAsia, 18(2), 121–130. https://doi.org/10.14456/ea.2025.42

Sankla, N., Loutchanwoot, P., Khankhum, S., Khammuang, S., Sarnthima, R., & Sunthamala, N. (2022). In vitro antioxidant and immunological-associated activities of ethanol extracts of Azima sarmentosa (Blume) Benth. and Hook. F. Tropical Journal of Natural Product Research, 6(12), 2007–2013. https://doi.org/10.26538/tjnpr/v6i12.18

Seo, B-S., Jeong, Y-J., Baek, N-R., Park, H-J., & Yang, H. I. (2022). Soil texture affects the conversion factor of electrical conductivity from 1:5 soil–water to saturated paste extracts. Pedosphere, 32(6), 905–915. https://doi.org/10.1016/j.pedsph.2022.06.023

Shahid, S. A., Zaman, M., & Heng, L. (2018). Introduction to soil salinity, sodicity and diagnostics techniques. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-96190-3_1

Smagin, A., Kacimov, A., & Sokolov, N. (2024). EC conversion for 1:5 extracts and standard saturated soil–water pastes in the assessment of arid land salinization: Classical methodologies revisited. Journal of the Saudi Society of Agricultural Sciences, 23(4), 277–288. https://doi.org/10.1016/j.jssas.2023.12.005

Sonmez, S. C., Buyuktas, D., & Okturen, F. (2008). Assessment of different soil to water ratios (1:1, 1:2.5, 1:5) in soil salinity studies. Geoderma, 144(1–2), 361–369. https://doi.org/10.1016/j.geoderma.2007.12.005

Spielvogel, S., Prietzel, J., & Kögel-Knabner, I. (2016). Stand scale variability of topsoil organic matter composition in a high-elevation Norway spruce forest ecosystem. Geoderma, 267, 112–122. https://doi.org/10.1016/j.geoderma.2015.12.001

Sukchan, S. (2005). Salt-affected soil map of Thung Kula Ronghai at 1:50,000 scale (in Thai). Office of Soil Survey and Land Use Plannning, Bangkok: 12–4. Retrieved from https://scholar.google.co.id/scholar?cluster=13698091492948044411&hl=id&as_sdt=2005&sciodt=0,5

Thanh, N. N., Chotpantarat, S., Trung, N. H., Ngu, N. H., & Muoi, L. V. (2022). Mapping groundwater potential zones in Kanchanaburi Province, Thailand by integrating of analytic hierarchy process, frequency ratio, and random forest. Ecological Indicators, 145, 109591. https://doi.org/10.1016/j.ecolind.2022.109591

United States Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkaline soils. Agricultural Handbook no. 60, pp. 83–88. Washington DC, USA: United States Department of Agriculture. Retrieved from https://www.ars.usda.gov/ARSUserFiles/20360500/hb60_pdf/hb60complete.pdf

Wang, K., Zhang, C., & Li, W. (2012). Comparison of geographically weighted regression and regression kriging for estimating the spatial distribution of soil organic matter. GIScience & Remote Sensing, 49(6), 915–932. https://doi.org/10.2747/1548-1603.49.6.915

Weather and Climate. (2025). Ban Phai rainfall & precipitation: Monthly Averages and year-round insights. Retrieved from https://weather-and-climate.com/average-monthly-precipitation-Rainfall,ban-phai-khon-kaen-province-th,Thailand

Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists, 2nd ed. Chichester, UK: John Wiley and Sons, Ltd. https://doi.org/10.1002/9780470517277

Wichaidit, P. (1995). Report in survey and studies of salt-affected soils: Khon Kaen Province (in Thai). Soil Survey and Classification, 1–20. Retrieved from https://scholar.google.co.id/scholar?cites=13485481174742532267&as_sdt=2005&sciodt=0,5&hl=id

Wu, X., Jiang, N., Li, A., Yang, Y., & Cheng, H. (2025). Spatial distribution pattern of soil organic matter in the wind erosion region of northeastern China based on the cokriging method. Catena, 248, 108575. https://doi.org/10.1016/j.catena.2024.108575

Xie, X-L., & Li, A-B. (2016). Improving spatial estimation of soil organic matter in a subtropical hilly area using covariate derived from vis-NIR spectroscopy. Biosystems Engineering, 152, 126–137. https://doi.org/10.1016/j.biosystemseng.2016.06.007

Yang, B., Liu, H., Kang, E. L., Shu, S., Xu, M., Wu, B., … & Yu, B. (2021). Spatio-temporal cokriging method for assimilating and downscaling multi-scale remote sensing data. Remote Sensing of Environment, 255, 112190. https://doi.org/10.1016/j.rse.2020.112190

Yang, F., Zhang, G., Yin, X., & Liu, Z. (2011). Field-scale spatial variation of saline–sodic soil and its relation with environmental factors in Western Songnen Plain of China. International Journal of Environmental Research and Public Health, 8(2), 374–387. https://doi.org/10.3390/ijerph8020374

Yao, R. J., Yang, J. S., Gao, P., Shao, H. B., Liu, G. M., & Yu, S. P. (2014). Comparison of statistical prediction methods for characterizing the spatial variability of apparent electrical conductivity in coastal salt-affected farmland. Environmental Earth Sciences, 71(1), 233–243. https://doi.org/10.1007/s12665-013-2427-7

Yates, S. R., & Warrick, A. W. (2002). Geostatistics. Methods of Soil Analysis. Part 4 Physical Methods. Soil Science Society of America, Madison, WI. pp. 81–118. https://doi.org/10.2136/sssabookser5.4.c5

Zheng, Z., Zhang, F., Ma, F., Chai, X., Zhu, Z., Shi, J., & Zhang, S. (2009). Spatiotemporal changes in soil salinity in a drip-irrigated field. Geoderma, 149(3–4), 243–248. https://doi.org/10.1016/j.geoderma.2008.12.002

Refbacks

  • There are currently no refbacks.