The Efficiency of Cokriging Spatial Interpolation to Estimate the Electrical Conductivity of Saturated Paste Extract (ECₑ) Using Soil to Water Ratios
Abstract
Keywords
Full Text:
PDFReferences
Abdelaal, S. M. S., Moussa, K. F., Ibrahim, A. H., Mohamed, E. S., Kucher, D. E., & Al-Faraj, M. K. (2021). Mapping spatial management zones of salt-affected soils in arid region: A case study in the east of the Nile Delta, Egypt. Agronomy, 11(12), 2510. https://doi.org/10.3390/agronomy11122510
Bogunovic, I., Pereira, P., & Brevik, E. C. (2017). Spatial distribution of soil chemical properties in an organic farm in Croatia. Science of the Total Environment, 584–585, 535–545. https://doi.org/10.1016/j.scitotenv.2017.01.062
Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x
Chi, C. M., & Wang, Z-C. (2009). Characterizing salt-affected soils of Songnen Plain using saturated paste and 1:5 soil-to-water extraction methods. Arid Land Research and Management, 24(1), 1–11. https://doi.org/10.1080/15324980903439362
Clark, I., & Harper, W. V. (2007). Practical geostatistics. Journal of the Royal Statistical Society. Series A (General), 144(4), 537. https://doi.org/10.2307/2981833
Corwin, D. L., & Yemoto, K. (2020). Salinity: Electrical conductivity and total dissolved solids. Soil Science Society of America Journal, 84(5), 1442–1461. https://doi.org/10.1002/saj2.20154
Daneshvar, S., Mosaddeghi, M. R., & Afyuni, M. (2024). Effect of biochar and hydrochar of pistachio residues on physical quality indicators of a sandy loam soil. Geoderma Regional, 36, e00740. https://doi.org/10.1016/j.geodrs.2023.e00740
Gee, G. W., & Or, D. (2002). 2.4 particle-size analysis. Methods of Soil Analysis: Part 4 Physical Methods, 5.4, pp. 255–293. Madison, WI: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.4.c12
Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press. https://doi.org/10.1093/oso/9780195115383.001.0001
Gozukara, G., Altunbas, S., Dengiz, O., & Adak, A. (2022). Assessing the effect of soil to water ratios and sampling strategies on the prediction of EC and pH using pXRF and Vis-NIR spectra. Computer and Electronics in Agriculture, 203(11), 107459. https://doi.org/10.1016/j.compag.2022.107459
He, Y., DeSutter, T., Hopkins, D., Jia, X., & Wysocki, D. A. (2013). Predicting ECe of the saturated paste extract from value of EC1:5. Canadian Journal of Soil Science, 93(5), 585–594. https://doi.org/10.4141/CJSS2012-080
He, Y., DeSutter, T., Prunty, L., Hopkins, D., Jia, X., & Wysocki, D. A. (2012). Evaluation of 1:5 soil to water extract electrical conductivity methods. Geoderma, 185–186, 12–17. https://doi.org/10.1016/j.geoderma.2012.03.022
Hossen, B., Yabar, H., & Faruque, M. J. (2022). Exploring the potential of soil salinity assessment through remote sensing and GIS: Case study in the coastal rural areas of Bangladesh. Land, 11(10), 1784. https://doi.org/10.3390/land11101784
Iwai, C. B., Oo, A. N., & Topark-ngarm, B. (2012). Soil property and microbial activity in natural salt affected soils in an alternating wet-dry tropical climate. Geoderma, 189–190, 144–152. https://doi.org/10.1016/j.geoderma.2012.05.001
John, K., Agyeman, P. C., Kebonye, N. M., Isong, A. I., Ayito, E. O., & Ofem, K. I. (2021). Hybridization of cokriging and gaussian process regression modelling techniques in mapping soil sulphur. Catena, 206, 105534. https://doi.org/10.1016/j.catena.2021.105534
Kargas, G., Londra, P., & Sgoubopoulou, A. (2020). Comparison of soil EC values from methods based on 1:1 and 1:5 soil to water ratios and ECe from saturated paste extract based method. Water, 12(4), 1010. https://doi.org/10.3390/W12041010
Khanh, P. T., Pramanik, S., & Ngoc, T. T. H. (2024). Soil permeability of sandy loam and clay loam soil in the paddy fields in An Giang Province in Vietnam. Environmental Challenges, 15, 100907. https://doi.org/10.1016/j.envc.2024.100907
Knotters, M., Brus, D. J., & Oude Voshaar, J. H. (1995). A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations. Geoderma, 67(3–4), 227–246. https://doi.org/10.1016/0016-7061(95)00011-C
Leksungnoen, N., Andriyas, T., & Andriyas, S. (2018). ECe prediction from EC1:5 in inland salt-affected soils collected from Khorat and Sakhon Nakhon basins, Thailand. Communications in Soil Science and Plant Analysis, 49(21), 2627–2637. https://doi.org/10.1080/00103624.2018.1524900
Li, J., Pu, L., Han, M., Zhu, M., Zhang, R., & Xiang, Y. (2014). Soil salinization research in China: Advances and prospects. Journal of Geographical Sciences, 24(5), 943–960. https://doi.org/10.1007/s11442-014-1130-2
Li, L., Lu, J., Wang, S., Ma, Y., Wei, Q., Li, X., & Cong, R. (2016). Methods for estimating leaf nitrogen concentration of winter oilseed rape (Brassica napus L.) using in situ leaf spectroscopy. Industrial Crops and Products, 91, 194–204. https://doi.org/10.1016/j.indcrop.2016.07.008
López-Granados, F., Jurado-Expósito, M., Atenciano, S., García-Ferrer, A., Sánchez De La Orden, M., & García-Torres, L. (2002). Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil, 246(1), 97–105. https://doi.org/10.1023/A:1021568415380
Lv, Z. Z., Liu, G. M., Yang, J. S., Zhang, M. M., & He, L. D. (2013). Spatial variability of soil salinity in Bohai Sea coastal wetlands, China: Partition into four management zones. Plant Biosystem, 147(4), 1201–1210. https://doi.org/10.1080/11263504.2013.861531
Marchetti, A., Piccini, C., Francaviglia, R., & Mabit, L. (2012). Spatial distribution of soil organic matter using geostatistics: A key indicator to assess soil degradation status in Central Italy. Pedosphere, 22(2), 230–242. https://doi.org/10.1016/S1002-0160(12)60010-1
Matthees, H. L., He, Y., Owen, R. K., Hopkins, D., Lee, J., Clay, D. E., … & Malo, D. D. (2017). Predicting soil electrical conductivity of the saturation extract from a 1:1 soil to water ratio. Communications in Soil Science and Plant Analysis, 48(18), 2148–2154. https://doi.org/10.1080/00103624.2017.1407780
Mitsuchi, M., Wichaidit, P., & Jeungnijnirund, S. (1986). Outline of soils of the northeast plateau, Thailand: Their characteristics and constraints. Technical paper, No. 1, pp. 80. Khon Kaen Province, Thailand: Agricultural Development Research Center in Northeast. Retrieved from https://books.google.co.id/books/about/Outline_of_Soils_of_the_Northeast_Platea.html?id=-n4_AAAAYAAJ&redir_esc=y
Miyamoto, S., Chacon, A., Hossain, M., & Martinez, I. (2005). Soil salinity of urban turf areas irrigated with saline water: I. Spatial variability. Landscape and Urban Planning, 71(2–4), 233–241. https://doi.org/10.1016/j.landurbplan.2004.03.006
Muang Pia Sub-district. (2022). Muang Pia Subdistrict Administration Organization. Retrieved from https://www.muangpere.go.th/data.php?content_id=2
Or, Y. M. (2010). A study in determining the sample size in geostatistics. Alberta, Canada: University of Alberta. https://doi.org/10.7939/R3SC96
Phontusang, P., Katawatin, R., Pannangpetch, K., & Lerdsuwansri, R. (2017). Sampling strategies for geostatistical analyses of field-scale spatial variability of electrical conductivity in inland salt-affected soils. International Journal of Geoinformatics, 13(2), 71–84. Retrieved from https://journals.sfu.ca/ijg/index.php/journal/article/view/1036
Phontusang, P., Katawatin, R., Pannangpetch, K., Lerdsuwansri, R., Kingpaiboon, S., & Wongpichet, K. (2018). Field-scale spatial variability of electrical conductivity of the inland, salt-affected soils of Northeast Thailand. Walailak Journal of Science and Technology, 15(5), 341–355. https://doi.org/10.48048/wjst.2018.3474
Plaster, E. J. (2013). Soil Science and Management. Boston: Cengage Learning. Retrieved from https://books.google.co.th/books?id=zeoWAAAAQBAJ
Qadir, M., Noble, A. D., Schubert, S., Thomas, R. J., & Arslan, A. (2006). Sodicity-induced land degradation and its sustainable management: Problems and prospects. Land Degradation and Development, 17(6), 661–676. https://doi.org/10.1002/ldr.751
Qi, W., Zhang, Z., Wang, C., & Huang, M. (2021). Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation. Agricultural Water Management, 248, 106756. https://doi.org/10.1016/j.agwat.2021.106756
Rhoades, J. D. (1982). Soluble salts. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2.2, Second Edition, pp.167–179. https://doi.org/10.2134/agronmonogr9.2.2ed.c10
Robertson, G. P. (2008). GS+: Geostatistics for Environmental Scientists, Second Edition. https://doi.org/10.1002/9780470517277.index
Rukadi, K., Phontusang, P., & Sriprachote, A. (2025). Soil ECe prediction from different EC water ratio and sample sizes in salt-affected soils. EnvironmentAsia, 18(2), 121–130. https://doi.org/10.14456/ea.2025.42
Sankla, N., Loutchanwoot, P., Khankhum, S., Khammuang, S., Sarnthima, R., & Sunthamala, N. (2022). In vitro antioxidant and immunological-associated activities of ethanol extracts of Azima sarmentosa (Blume) Benth. and Hook. F. Tropical Journal of Natural Product Research, 6(12), 2007–2013. https://doi.org/10.26538/tjnpr/v6i12.18
Seo, B-S., Jeong, Y-J., Baek, N-R., Park, H-J., & Yang, H. I. (2022). Soil texture affects the conversion factor of electrical conductivity from 1:5 soil–water to saturated paste extracts. Pedosphere, 32(6), 905–915. https://doi.org/10.1016/j.pedsph.2022.06.023
Shahid, S. A., Zaman, M., & Heng, L. (2018). Introduction to soil salinity, sodicity and diagnostics techniques. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-96190-3_1
Smagin, A., Kacimov, A., & Sokolov, N. (2024). EC conversion for 1:5 extracts and standard saturated soil–water pastes in the assessment of arid land salinization: Classical methodologies revisited. Journal of the Saudi Society of Agricultural Sciences, 23(4), 277–288. https://doi.org/10.1016/j.jssas.2023.12.005
Sonmez, S. C., Buyuktas, D., & Okturen, F. (2008). Assessment of different soil to water ratios (1:1, 1:2.5, 1:5) in soil salinity studies. Geoderma, 144(1–2), 361–369. https://doi.org/10.1016/j.geoderma.2007.12.005
Spielvogel, S., Prietzel, J., & Kögel-Knabner, I. (2016). Stand scale variability of topsoil organic matter composition in a high-elevation Norway spruce forest ecosystem. Geoderma, 267, 112–122. https://doi.org/10.1016/j.geoderma.2015.12.001
Sukchan, S. (2005). Salt-affected soil map of Thung Kula Ronghai at 1:50,000 scale (in Thai). Office of Soil Survey and Land Use Plannning, Bangkok: 12–4. Retrieved from https://scholar.google.co.id/scholar?cluster=13698091492948044411&hl=id&as_sdt=2005&sciodt=0,5
Thanh, N. N., Chotpantarat, S., Trung, N. H., Ngu, N. H., & Muoi, L. V. (2022). Mapping groundwater potential zones in Kanchanaburi Province, Thailand by integrating of analytic hierarchy process, frequency ratio, and random forest. Ecological Indicators, 145, 109591. https://doi.org/10.1016/j.ecolind.2022.109591
United States Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkaline soils. Agricultural Handbook no. 60, pp. 83–88. Washington DC, USA: United States Department of Agriculture. Retrieved from https://www.ars.usda.gov/ARSUserFiles/20360500/hb60_pdf/hb60complete.pdf
Wang, K., Zhang, C., & Li, W. (2012). Comparison of geographically weighted regression and regression kriging for estimating the spatial distribution of soil organic matter. GIScience & Remote Sensing, 49(6), 915–932. https://doi.org/10.2747/1548-1603.49.6.915
Weather and Climate. (2025). Ban Phai rainfall & precipitation: Monthly Averages and year-round insights. Retrieved from https://weather-and-climate.com/average-monthly-precipitation-Rainfall,ban-phai-khon-kaen-province-th,Thailand
Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists, 2nd ed. Chichester, UK: John Wiley and Sons, Ltd. https://doi.org/10.1002/9780470517277
Wichaidit, P. (1995). Report in survey and studies of salt-affected soils: Khon Kaen Province (in Thai). Soil Survey and Classification, 1–20. Retrieved from https://scholar.google.co.id/scholar?cites=13485481174742532267&as_sdt=2005&sciodt=0,5&hl=id
Wu, X., Jiang, N., Li, A., Yang, Y., & Cheng, H. (2025). Spatial distribution pattern of soil organic matter in the wind erosion region of northeastern China based on the cokriging method. Catena, 248, 108575. https://doi.org/10.1016/j.catena.2024.108575
Xie, X-L., & Li, A-B. (2016). Improving spatial estimation of soil organic matter in a subtropical hilly area using covariate derived from vis-NIR spectroscopy. Biosystems Engineering, 152, 126–137. https://doi.org/10.1016/j.biosystemseng.2016.06.007
Yang, B., Liu, H., Kang, E. L., Shu, S., Xu, M., Wu, B., … & Yu, B. (2021). Spatio-temporal cokriging method for assimilating and downscaling multi-scale remote sensing data. Remote Sensing of Environment, 255, 112190. https://doi.org/10.1016/j.rse.2020.112190
Yang, F., Zhang, G., Yin, X., & Liu, Z. (2011). Field-scale spatial variation of saline–sodic soil and its relation with environmental factors in Western Songnen Plain of China. International Journal of Environmental Research and Public Health, 8(2), 374–387. https://doi.org/10.3390/ijerph8020374
Yao, R. J., Yang, J. S., Gao, P., Shao, H. B., Liu, G. M., & Yu, S. P. (2014). Comparison of statistical prediction methods for characterizing the spatial variability of apparent electrical conductivity in coastal salt-affected farmland. Environmental Earth Sciences, 71(1), 233–243. https://doi.org/10.1007/s12665-013-2427-7
Yates, S. R., & Warrick, A. W. (2002). Geostatistics. Methods of Soil Analysis. Part 4 Physical Methods. Soil Science Society of America, Madison, WI. pp. 81–118. https://doi.org/10.2136/sssabookser5.4.c5
Zheng, Z., Zhang, F., Ma, F., Chai, X., Zhu, Z., Shi, J., & Zhang, S. (2009). Spatiotemporal changes in soil salinity in a drip-irrigated field. Geoderma, 149(3–4), 243–248. https://doi.org/10.1016/j.geoderma.2008.12.002
Refbacks
- There are currently no refbacks.










