Optimization of Plant Growth Regulators and Bioreactor Systems for Efficient In Vitro Shoot Multiplication and Elongation of Amorphophallus muelleri Blume

Nur Afni Jayanti, Angelia Krisdanti Nasera Putri, Yosephine Sri Wulan Manuhara, Anjar Tri Wibowo

Abstract

Porang (Amorphophallus muelleri Blume), an Indonesian endemic species rich in glucomannan, is widely utilized in food industries for its health benefits. However, its traditional vegetative propagation through bulbils produces limited plants, necessitating an efficient in vitro multiplication system. This study aimed to optimize plant growth regulator combinations and bioreactor systems for enhanced shoot induction and elongation of A. muelleri. During the initiation and induction stages, combinations of thidiazuron (TDZ) with benzylaminopurine (BAP) or kinetin at concentrations ranging from 0 to 1.00 mg l⁻¹ were applied to solid MS media and observed for 8 weeks. The combination of TDZ 0.50 mg l⁻¹ + BAP 1.00 mg l⁻¹ produced the fastest shoot induction (32.34±2.52 days), while TDZ 0.75 mg l⁻¹ + BAP 0.75 mg l⁻¹ resulted in the highest shoot number (76.33±22.81 shoots explant⁻¹) and 100% shoot formation. TDZ combined with kinetin had no significant effect on induction parameters. For elongation, shoots induced from TDZ 0.75 mg l⁻¹ + BAP 0.75 mg l⁻¹ medium were cultured in two bioreactor systems: a Temporary Immersion System (TIS) and a Balloon Type Bubble Bioreactor (BTBB). The BTBB significantly outperformed the TIS, yielding 85.2±3.35 shoots explant⁻¹ with an average shoot length of 5.67±1.13 mm after 4 weeks. These results indicate that the synergistic use of TDZ and BAP, combined with the BTBB system, substantially improves in vitro shoot multiplication and elongation of porang, providing a reliable approach for its large-scale propagation and conservation.

Keywords

bioreactor; conservation; cytokinin; mass propagation; shoot induction

Full Text:

PDF

References

Ali, H. M., Khan, T., Khan, M. A., & Ullah, N. (2022). The multipotent thidiazuron: A mechanistic overview of its roles in callogenesis and other plant cultures in vitro. Biotechnology and Applied Biochemistry, 69(6), 2624–2640. https://doi.org/10.1002/bab.2311

Andriani, S., Siregar, L. A. M., & Safni, I. (2021). Microtubers production by using Temporary Immersion System (TIS) bioreactor to potato varieties. IOP Conference Series: Earth and Environmental Science, 886(1), 012005. https://doi.org/10.1088/1755-1315/886/1/012005

Anggraeni, A. A., Triwitono, P., Lestari, L. A., & Harmayani, E. (2024). Evaluation of glucomannan as a fat replacer in the dough and cookies made from fermented cassava flour and soy protein concentrate. Food Chemistry, 434, 137452. https://doi.org/10.1016/J.FOODCHEM.2023.137452

Ashokhan, S., Othman, R., Rahim, M. H. A., Karsani, S. A., & Yaacob, J. S. (2020). Effect of plant growth regulators on coloured callus formation and accumulation of azadirachtin, an essential biopesticide in Azadirachta indica. Plants, 9(3), 352. https://doi.org/10.3390/plants9030352

Azhar, B., Gunawan, S., Setyadi, E. R. F., Majidah, L., Taufany, F., Atmaja, L., & Aparamarta, H. W. (2023). Purification and separation of glucomannan from porang tuber flour (Amorphophallus muelleri) using microwave assisted extraction as an innovative gelatine substituent. Heliyon, 9(11), e21972. https://doi.org/10.1016/J.HELIYON.2023.E21972

Bidabadi, S. S., & Jain, S. M. (2020). Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants, 9(6), 702. https://doi.org/10.3390/plants9060702

Desai, P., Desai, S., Rafaliya, R., & Patil, G. (2022). Plant tissue culture: Somatic embryogenesis and organogenesis. Advances in Plant Tissue Culture: Current Developments and Future Trends, 109–130. https://doi.org/10.1016/B978-0-323-90795-8.00006-0

Du, Y., Zhao, W., Xin, M., Li, S., Zhu, L., Ma, Q., … & Li, Q. (2025). Shoot organogenesis and plant regeneration from stem explants in Acer truncatum. Research Square, 1–21. https://doi.org/10.21203/rs.3.rs-7343932/v1

Ersali, Y. (2024). Control of hyperhydricity of Pistacia khinjuk stocks in vitro shoots. BMC Biotechnology, 24(1), 97. https://doi.org/10.1186/s12896-024-00929-3

Esyanti, R. R., Fadholi, M., Rizki, R. M., & Faizal, A. (2019). Shoot multiplication and growth rates of Aquilaria malaccensis Lamk. shoot cultures in temporary immersion system (TIS)-RITA® and bubble column bioreactors. Pakistan Journal of Botany, 51(4), 1317–1321. http://dx.doi.org/10.30848/PJB2019-4(36)

Ferziana, Erfa, L., Maulida, D., Sari, R. M., & Yuniardi, F. (2021). In vitro regeneration of porang (Amorphophallus muelleri Blume) at several concentrations of BAP (benzyl amino purine). International Conference on Agriculture and Applied Science (ICoAAS), 76–83. https://doi.org/10.25181/icoaas.v2i2.2487

Haque, M. I., Singh, P. K., Ghuge, S., Kumar, A., Chandra Rai, A., Kumar, A., & Modi, A. (2022). A general introduction to and background of plant tissue culture: Past, current, and future aspects. Advances in Plant Tissue Culture: Current Developments and Future Trends, 1–30. https://doi.org/10.1016/B978-0-323-90795-8.00019-9

Hardjo, P. H., Wijaya, A. N., Savitri, W. D., & Irawati, F. (2023). Plant regeneration in Amorphophallus muelleri Blume. through organogenic. Biosaintifika, 15(1), 60–66. https://doi.org/10.15294/biosaintifika.v15i1.40501

Harijati, N., & Ying, D. (2021). The effect of cutting the bulbil-porang (Amorphophallus muelleri) on its germination ability. IOP Conference Series: Earth and Environmental Science, 743(1), 012084. https://doi.org/10.1088/1755-1315/743/1/012084

Imelda, M., Wulansari, A., & Poerba, Y. S. (2008). Shoot regeneration from leaf petioles of iles-iles (Amorphophallus muelleri Blume). Biodiversitas, 9(3), 173–176. https://doi.org/10.13057/biodiv/d090304

Kashyap, S., Shreyaa, S., Suresh, A., & Tharannum, S. (2022). Micropropagation of Solanum lycopersicum L. using chemical free formulated organic plant growth media. Plant Science Today, 9(1), 132–136. https://doi.org/10.14719/pst.1348

Kruglova, N., Zinatullina, A., & Yegorova, N. (2023). Histological approach to the study of morphogenesis in callus cultures in vitro: A review. International Journal of Plant Biology, 14(2), 533–545. https://doi.org/10.3390/ijpb14020042

Leto, L., Guarrasi, V., Agosti, A., Nironi, M., Chiancone, B., & Juan Vicedo, J. (2025). Effects of cytokinins on morphogenesis, total (poly)phenolic content and antioxidant capacity of in vitro-cultured hop plantlets, cvs. Cascade and Columbus. Plants, 14(3), 418. https://doi.org/10.3390/plants14030418

Lim, M. J., Han, J. E., Murthy, H. N., Song, H. Y., Lee, S. Y., & Park, S. Y. (2024). A comparison of semi-solid, liquid, and temporary immersion bioreactor systems for effective plant regeneration of Gerbera jamesonii “Shy Pink.” Horticulturae, 10(8), 836. https://doi.org/10.3390/horticulturae10080836

Long, Y., Yang, Y., Pan, G., & Shen, Y. (2022). New insights into tissue culture plant-regeneration mechanisms. Frontiers in Plant Science, 13, 926752. https://doi.org/10.3389/fpls.2022.926752

Murthy, H. N., Joseph, K. S., Paek, K. Y., & Park, S. Y. (2023). Bioreactor systems for micropropagation of plants: Present scenario and future prospects. Frontiers in Plant Science, 14, 1159588. https://doi.org/10.3389/fpls.2023.1159588

Normasari, R. (2025). In vitro growth response of porang (Amorphophallus muelleri Blume) bulbil to kinetin concentration. Jurnal Biologi Tropis, 25(2), 2004–2011. https://doi.org/10.29303/jbt.v25i2.9050

Novianto, T. D., Rahayoe, S., & Sedayu, B. B. (2025). Enhancing the properties of biodegradable food packaging films derived from agar and porang-glucomannan (Amorphophallus oncophyllus) blends. Journal of Renewable Materials, 13(2), 385–400. https://doi.org/10.32604/JRM.2024.057313

Nugrahaeni, N., Hapsari, R. T., Indriani, F. C., Amanah, A., Yusnawan, E., Mutmaidah, S., ... & Utomo, J. S. (2021). Morphological characteristics of Madiun 1, the first porang (Amorphophallus muelleri Blume) released cultivar in Indonesia. IOP Conference Series: Earth and Environmental Science, 911(1), 012011. https://doi.org/10.1088/1755-1315/911/1/012011

Ohbayashi, I., Sakamoto, Y., Kuwae, H., Kasahara, H., & Sugiyama, M. (2022). Enhancement of shoot regeneration by treatment with inhibitors of auxin biosynthesis and transport during callus induction in tissue culture of Arabidopsis thaliana. Plant Biotechnology, 39(1), 43–50. https://doi.org/10.5511/plantbiotechnology.21.1225a

Padilha, J. H. D., Steinmacher, D., & Quoirin, M. (2021). Peach palm plantlet growth in different culture media in a temporary immersion system. Ciencia Rural, 51(3), e20190075. https://doi.org/10.1590/0103-8478cr20190075

Pernisova, M., Grochova, M., Konecny, T., Plackova, L., Harustiakova, D., Kakimoto, T., … & Hejatko, J. (2018). Cytokinin signalling regulates organ identity via the AHK4 receptor in Arabidopsis. Development, 145(14), dev163907. https://doi.org/10.1242/dev.163907

Polivanova, O. B., & Bedarev, V. A. (2022). Hyperhydricity in plant tissue culture. Plants, 11(23), 3313. https://doi.org/10.3390/plants11233313

Seliem, M. K., Abdalla, N., & El-Mahrouk, M. E. (2025). Cytokinin potentials on in vitro shoot proliferation and subsequent rooting of Agave sisalana Perr. Syn. Horticulturae, 11(8), 929. https://doi.org/10.3390/horticulturae11080929

Shi, X.-D., Yin, J.-Y., Zhang, L.-J., Huang, X.-J., & Nie, S.-P. (2019). Studies on O-acetyl-glucomannans from Amorphophallus species: Comparison of physicochemical properties and primary structures. Food Hydrocolloids, 89, 503–511. https://doi.org/10.1016/j.foodhyd.2018.11.013

Šmeringai, J., Schrumpfová, P. P., & Pernisová, M. (2023). Cytokinins – regulators of de novo shoot organogenesis. Frontiers in Plant Science, 14, 1239133. https://doi.org/10.3389/fpls.2023.1239133

Valdiani, A., Hansen, O. K., Nielsen, U. B., Johannsen, V. K., Shariat, M., Georgiev, M. I., … & Abiri, R. (2019). Bioreactor-based advances in plant tissue and cell culture: Challenges and prospects. Critical Reviews in Biotechnology, 39(1), 20–34. https://doi.org/10.1080/07388551.2018.1489778

van Voorthuizen, M. J., Nisler, J., Song, J., Spíchal, L., & Jameson, P. E. (2021). Targeting cytokinin homeostasis in rapid cycling Brassica rapa with plant growth regulators INCYDE and TD-K. Plants, 10(1), 39. https://doi.org/10.3390/plants10010039

Velda, A. C., Rodriguez, S. A. G., Descalsota, M. L. V., & Damasco, O. P. (2023). Thidiazuron-mediated and genotype-independent regeneration system for tomato (Solanum lycopersicum L.). Journal of Applied Biology and Biotechnology, 11(4), 128–134. https://doi.org/10.7324/JABB.2023.115801

Verdú-Navarro, F., Moreno-Cid, J. A., Weiss, J., & Egea-Cortines, M. (2023). The advent of plant cells in bioreactors. Frontiers in Plant Science, 14, 1310405. https://doi.org/10.3389/fpls.2023.1310405

Wahidah, B. F., Afiati, N., & Jumari. (2021). Community knowledge of Amorphophallus muelleri Blume: Cultivation and utilization in Central Java, Indonesia. Biodiversitas, 22(7), 2731–2738. https://doi.org/10.13057/biodiv/d220722

Wang, F., Li, Y., Pang, Y., Hu, J., Kang, X., & Qian, C. (2025). Thidiazuron enhances strawberry shoot multiplication by regulating hormone signal transduction pathways. International Journal of Molecular Sciences, 26(9), 4060. https://doi.org/10.3390/ijms26094060

Widhiastuty, N. S., Anwar, S., & Rosyida. (2023). The effect of PVP (polivinil pirolidon) and BAP (6-benzylamino purine) on shoots induction of teak plus Perhutani (Tectona grandis). IOP Conference Series: Earth and Environmental Science, 1246(1), 012011. https://doi.org/10.1088/1755-1315/1246/1/012011

Winarno, G. D., Banuwa, I. S., & Harianto, S. P. (2023). Vegetative propagation of bubil seeds and tuber dormancy reduction in porang (Amorphophallus muelleri Blume) for shorter harvest time. International Journal of Design and Nature and Ecodynamics, 18(4), 957–962. https://doi.org/10.18280/ijdne.180423

Wongsa, T., Kongbangkerd, A., & Kunakhonnuruk, B. (2023). Optimal growth and biomass of Centella asiatica using a twin-bottle temporary immersion bioreactor. Horticulturae, 9(6), 638. https://doi.org/10.3390/horticulturae9060638

Yang, W., Cortijo, S., Korsbo, N., Roszak, P., Schiessl, K., Gurzadyan, A., … & Meyerowitz, E. (2021). Molecular mechanism of cytokinin-activated cell division in Arabidopsis. Science, 371(6536), 1350–1355. https://doi.org/10.1126/science.abe2305

Refbacks

  • There are currently no refbacks.