Media Manipulation to Enhance In Vitro Pitcher Formation in Nepenthes mirabilis (Lour.) Druce for Microfloriculture Development

Sugiyono Sugiyono, Anindya Puspaning Tyas, Dea Yuniar Indikasuri, Sri Lestari, Paul A Davison, Rendie Prasetyo

Abstract

Microfloriculture refers to souvenirs and Living Room Ornaments made from the in vitro cultured ornamental plants, which are innovative, unique, environmentally friendly, and can be produced across the year. In vitro pitcher-forming Nepenthes mirabilis will increase the attractiveness and market value of microfloriculture products. Two experiments have been carried out to stimulate in vitro pitcher formation in N. mirabilis using a completely randomized design (CRD) of a two-factorial treatment pattern with three replicates. The first experiment tested different Murashige and Skoog (MS) media formulations (full-strength, 3/4MS, 1/2MS, and 1/4MS) and phytagel concentrations (0, 2.5, 3.5, and 4.5 g l-1). The same media formulations and 6-Benzylaminopurine (BAP) concentrations (0, 0.5, 1.0, and 1.5 μM) were tested in the second experiment. The results showed that the explants cultured on 1/4MS media produced the greatest number of shoots (3.83-8.25) and leaves (26.17-26.75), the earliest pitcher formation (27.75±2.06 days), the highest number of pitchers (6.50±2.65), and pitcher-forming leaves (23.30±5.10%). Liquid media enhanced leaves (28.33±4.97) and pitchers (6.42±3.36) formation as well as pitcher-forming leaves percentage (21.37±8.01%). A 1/4MS supplemented with 0.5 μM BAP maximized pitcher-forming leaves (21.08±7.78%) and pitcher number (5.67±2.52). Adding 1.5 μM BAP on 1/4MS media produced the highest number of leaves (38.67±5.69). Full-strength MS produced the lowest number of shoots, leaves, pitchers, and pitcher-forming leaves. This study developed an affordable and effective method to improve in vitro pitcher development in N. mirabilis, highlighting how nutrient levels and BAP concentration influence pitcher formation, which aids in optimizing culture techniques for ornamental carnivorous plants.

Keywords

BAP; media formulation; microfloriculture; Nepenthes mirabilis; pitcher formation

Full Text:

PDF

References

Adamec, L., Matušíková, I., & Pavlovič, A. (2021). Recent ecophysiological, biochemical and evolutional insights into plant carnivory. Annals of Botany, 128(3), 241–259. https://doi.org/10.1093/aob/mcab071

Agrawal, A., Pareek, A., & Dkhar, J. (2022). Genetic basis of carnivorous leaf development. Frontiers in Plant Science, 12, 825289. https://doi.org/10.3389/fpls.2021.825289

An, J., Kim, P. B., Park, H. B., Kim, S., Park, H. J., Lee, C. W., ..., & Hwang, J. E. (2021). Effects of different growth media on in vitro seedling development of an endangered orchid species Sedirea japonica. Plants, 10(6), 1193. https://doi.org/10.3390/plants10061193

Angadam, J. O., Njoya, M., Ntwampe, S. K., Chidi, B. S., Lim, J. W., Okudoh, V. I., & Hewitt, P. L. (2022). Nepenthes mirabilis fractionated pitcher fluid use for mixed agro-waste pretreatment: Advocacy for non-chemical use in biorefineries. Catalysts, 12(7), 726. https://doi.org/10.3390/catal12070726

Arteta, T. A., Hameg, R., Landin, M., Gallego, P. P., & Barreal, M. E. (2022). Artificial neural networks elucidated the essential role of mineral nutrients versus vitamins and plant growth regulators in achieving healthy micropropagated plants. Plants, 11(10), 1284. https://doi.org/10.3390/plants11101284/S1

Asthana, P., Rai, M. K., & Jaiswal, U. (2024). 6-Benzylaminopurine mediated indirect organogenesis in Sapindus trifoliatus L. through internodal segments. Vegetos, 38(1), 397–407. https://doi.org/10.1007/S42535-024-00873-9/metrics

Avila-Victor, C. M., Ordaz-Chaparro, V. M., de Jesús Arjona-Suárez, E., Iracheta-Donjuan, L., Gómez-Merino, F. C., & Robledo-Paz, A. (2023). In vitro mass propagation of coffee plants (Coffea arabica L. var. Colombia) through indirect somatic embryogenesis. Plants, 12(6), 1237. https://doi.org/10.3390/plants12061237

Bhattacharjee, S., Washmin, N., Borah, T., Sarkar, A., Mudoi, K. D., Saikia, S. P., ..., & Banik, D. (2024). Conspectus on endangered carnivorous pitcher plant Nepenthes khasiana Hook.f. emphasizing in-vitro regeneration, pitcher development, and stability in genetic makeup. South African Journal of Botany, 167, 270–284. https://doi.org/10.1016/j.sajb.2024.02.018

Biswas, P., Kumari, A., & Kumar, N. (2024). Impact of salt strength on in vitro propagation and rebaudioside A content in Stevia rebaudiana under semi-solid and liquid MS media. Scientific Reports, 14(1), 22148. https://doi.org/10.1038/S41598-024-70899-1

Capó-Bauçà, S., Font-Carrascosa, M., Ribas-Carbó, M., Pavlovič, A., & Galmés, J. (2020). Biochemical and mesophyll diffusional limits to photosynthesis are determined by prey and root nutrient uptake in the carnivorous pitcher plant Nepenthes × ventrata. Annals of Botany, 126(1), 25–37. https://doi.org/10.1093/aob/mcaa041

Cárdenas-Aquino, M. D. R., Camas-Reyes, A., Valencia-Lozano, E., López-Sánchez, L., Martínez-Antonio, A., & Cabrera-Ponce, J. L. (2023). The cytokinins BAP and 2-iP modulate different molecular mechanisms on shoot proliferation and root development in lemongrass (Cymbopogon citratus). Plants, 12(20), 3637. https://doi.org/10.3390/plants12203637

Cross, A. T., Van Der Ent, A., Wickmann, M., Skates, L. M., Sumail, S., Gebauer, G., & Robinson, A. (2022). Capture of mammal excreta by Nepenthes is an effective heterotrophic nutrition strategy. Annals of Botany, 130(7), 927. https://doi.org/10.1093/aob/mcac134

Dkhar, J., Bagri, J., Dhiman, K., & Pareek, A. (2024). Transcriptomic and metabolomic responses to varying nutrient conditions reveal new insights into pitcher formation in Nepenthes khasiana. Physiologia Plantarum, 176(3), e14361. https://doi.org/10.1111/ppl.14361

García-Pérez, P., Lozano-Milo, E., Landín, M., & Gallego, P. P. (2020). Combining medicinal plant in vitro culture with machine learning technologies for maximizing the production of phenolic compounds. Antioxidants, 9(3), 210. https://doi.org/10.3390/antiox9030210

Gilbert, K. J., Bittleston, L. S., Tong, W., & Pierce, N. E. (2020). Tropical pitcher plants (Nepenthes) act as ecological filters by altering properties of their fluid microenvironments. Scientific Reports, 10(1), 4431. https://doi.org/10.1038/s41598-020-61193-x

Givnish, T. J., & Shiba, Z. W. (2022). Leaf NPK stoichiometry, δ15N, and apparent nutrient limitation of co-occurring carnivorous and noncarnivorous plants. Ecology, 103(12), e3825. https://doi.org/10.1002/ecy.3825

Hameg, R., Arteta, T. A., Landin, M., Gallego, P. P., & Barreal, M. E. (2020). Modeling and optimizing culture medium mineral composition for in vitro propagation of Actinidia arguta. Frontiers in Plant Science, 11, 554905. https://doi.org/10.3389/fpls.2020.554905

Handayani, T. (2021). Peranan tanaman kantong semar (Nepenthes spp) dalam kehidupan manusia dan lingkungannya. Gunung Djati Conference Series, 6, 11–18. Retrieved from https://www.conferences.uinsgd.ac.id/index.php/gdcs/article/view/484

Handayani, T., & Hadiah, J. T. (2019). Pitcher morphology and pitcher coloring of Nepenthes mirabilis Druce. From east Kalimantan, Indonesia. Biodiversitas, 20(10), 2824–2832. https://doi.org/10.13057/biodiv/d201007

Hernawati, Zuhud, E. A., Prasetyo, L. B., & Soekmadi, R. (2022). Synopsis of Sumatran Nepenthes (Indonesia). Biodiversitas, 23(8), 4243–4255. https://doi.org/10.13057/biodiv/d230848

Hussain, S., Nanda, S., Zhang, J., Rehmani, M. I. A., Suleman, M., Li, G., & Hou, H. (2021). Auxin and cytokinin interplay during leaf morphogenesis and phyllotaxy. Plants, 10(8), 1732. https://doi.org/10.3390/plants10081732

Isnaini, Y., & Novitasari, Y. (2023). Pitcher formation of Nepenthes ampullaria and Nepenthes rafflesiana on modified in vitro media. IOP Conference Series: Earth and Environmental Science, 1255(1), 012038. https://doi.org/10.1088/1755-1315/1255/1/012038

Iswara, V., Setiawan, A., Palupi, E. R., & Purwanto, Y. A. (2019). Ultrafine bubble water pengaruhnya dalam pematahan dormansi benih padi. Jurnal Penelitian Pertanian Tanaman Pangan, 2(3), 137–143. https://doi.org/10.21082/jpptp.v2n3.2018.p137-143

Liu, W., Lin, L. C., Wang, P. J., Chen, Y. N., Wang, S. C., Chuang, Y. T., ..., & Chang, H. W. (2021). Nepenthes ethyl acetate extract provides oxidative stress-dependent anti-leukemia effects. Antioxidants, 10(9), 1410. https://doi.org/10.3390/antiox10091410

Mansur, M., Salamah, A., Mirmanto, E., & Brearley, F. Q. (2024). Ecology of Nepenthes on Mount Talang, West Sumatra, Indonesia. Tropical Ecology, 65(3), 460–469. https://doi.org/10.1007/s42965-024-00333-0

Marković, M., Trifunović-Momčilov, M., Radulović, O., Paunović, D. M., Antonić Reljin, D. D., Uzelac, B., & Subotić, A. (2023). The effects of different auxin–cytokinin combinations on morphogenesis of Fritillaria meleagris using bulb scale sections in vitro. Horticulturae, 9(8), 910. https://doi.org/10.3390/horticulturae9080910

Meinaswati, F. S., Setiari, N., Nurchayati, Y., & Suedy, S. W. A. (2022). Response of seed germination and growth of Nepenthes gymnamphora Nees in vitro to the concentration of MS mineral salt, peptone and thidiazuron. Jurnal Bioteknologi dan Biosains Indonesia, 9(1), 57–65. Retrieved from https://ejournal.brin.go.id/jbbi/article/view/1786

Miguel, S., Michel, C., Biteau, F., Hehn, A., & Bourgaud, F. (2020). In vitro plant regeneration and agrobacterium-mediated genetic transformation of a carnivorous plant, Nepenthes mirabilis. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-74108-7

Mithöfer, A. (2022). Carnivorous plants and their biotic interactions. Journal of Plant Interactions, 17(1), 333–343. https://doi.org/10.1080/17429145.2022.2038710

Nhut, D. T., Tung, H. T., & Yeung, E. C. T. (2022). Plant tissue culture: New techniques and application in horticultural species of tropical region. Springer Nature. https://doi.org/10.1007/978-981-16-6498-4

Nirmal, D., Teraiya, S., & Joshi, P. (2023). Liquid culture system: An efficient approach for sustainable micropropagation. Current Agriculture Research Journal, 11(1), 28–42. https://doi.org/10.12944/carj.11.1.03

Nongdam, P., Beleski, D. G., Tikendra, L., Dey, A., Varte, V., El Merzougui, S., ... & Vendrame, W. A. (2023). Orchid micropropagation using conventional semi-solid and temporary immersion systems: A review. Plants, 12(5), 1136. https://doi.org/10.3390/plants12051136

Novitasari, Y., & Isnaini, Y. (2021). Propagation of pitcher plants (Nepenthes gracilis Korth. and Nepenthes reinwardtiana Miq.) through callus induction. Agric, 33(2), 81–92. https://doi.org/10.24246/agric.2021.v33.i2.p81-92

Nska, L.-R., Kulpa, D., Trejgell, A., Malik, M., Tomiak, E., & Zena Pawłowska, B. (2024). Effect of liquid culture systems (temporary immersion bioreactor and rotary shaker) used during multiplication and differentiation on efficiency of repetitive somatic embryogenesis of Narcissus L. ‘Carlton.’ Agronomy, 15(1), 85. https://doi.org/10.3390/agronomy15010085

Oberschelp, G. P. J., & Gonçalves, A. N. (2018). Analysis of nutrient deficiencies affecting in vitro growth and development of Eucalyptus dunnii Maiden. Physiology and Molecular Biology of Plants, 24(4), 693–702. https://doi.org/10.1007/s12298-018-0560-1

Park, S. (2021). Plant tissue culture techniques and experiments (Fourth Edition). Academic Press Elsevier. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=zSn5DwAAQBAJ&oi=fnd&pg=PP1&dq=Plant+Tissue+Culture+Techniques+and+Experiments+&ots=epDz-OOxfw&sig=c5tmtYV4QepTIVJwA7nvLJ-1nts&redir_esc=y#v=onepage&q=Plant%20Tissue%20Culture%20Techniques%20and%20Experiments&f=false

Pasternak, T. P., & Steinmacher, D. (2024). Plant growth regulation in cell and tissue culture in vitro. Plants, 13(2), 327. https://doi.org/10.3390/plants13020327

Pavlovič, A., Krausko, M., & Adamec, L. (2016). A carnivorous sundew plant prefers protein over chitin as a source of nitrogen from its traps. Plant Physiology and Biochemistry, 104, 11–16. https://doi.org/10.1016/j.plaphy.2016.03.008

Polivanova, O. B., & Bedarev, V. A. (2022). Hyperhydricity in plant tissue culture. Plants, 11(23), 3313. https://doi.org/10.3390/plants11233313

Prasad, R. (2022). Cytokinin and its key role to enrich the plant nutrients and growth under adverse conditions-an update. Frontiers in Genetics, 13, 883924. https://doi.org/10.3389/fgene.2022.883924

Prawestri, A. D., Rahayu, R. S., Kurniajati, W. S., Sunardi, & Mansur, M. (2024). In vitro seed germination and shoot growth of Nepenthes jamban Chi. C. Lee, Hernawati & Akhriadi, a unique pitcher plant from Indonesia. Journal of Tropical Biodiversity and Biotechnology, 9(2), 87674. https://doi.org/10.22146/jtbb.87674

Putri, A. K., Prasetyo, R., Proklamasiningsih, E., Davison, P. A., & Sugiyono. (2024). Modification of media formulation and agar concentration to improve pitcher plant (Nepenthes mirabilis (Lour.) Druce) micropropagation for conservation and microfloriculture development. AgriHealth: Journal of Agri-Food, Nutrition and Public Health, 5(1), 41–53. https://doi.org/10.20961/agrihealth.v5i1.85361

Rahayu, E. S., & Banowati, N. C. (2022). In vitro multiplication of Nepenthes mirabilis Lour (Druce) with variations concentration of sucrose and BAP. Biosaintifika, 14(3), 417–421. https://doi.org/10.15294/biosaintifika.v14i3.38588

Rahman-Soad, A., Dávila-Lara, A., Paetz, C., & Mithöfer, A. (2021). Plumbagin, a potent naphthoquinone from Nepenthes plants with growth inhibiting and larvicidal activities. Molecules, 26(4), 825. https://doi.org/10.3390/molecules26040825

Ruan, J., & Yi, P. (2022). Exogenous 6-benzylaminopurine inhibits tip growth and cytokinesis via regulating actin dynamics in the moss Physcomitrium patens. Planta, 256, 1. https://doi.org/10.1007/S00425-022-03914-2

Sánchez-Gutiérrez, A. E., Soto-Zarazúa, G. M., Toledano-Ayala, M., & García-Trejo, J. F. (2023). A potential alternative for agar in in vitro culture media based on hydrocolloids present in Nopal: General structure and mechanical properties. Recent Research and Advances in Soilless Culture. IntechOpen. https://doi.org/10.5772/intechopen.101745

Sapaeing, A., Sutthinon, P., Hilae, A., & Wattanapan, N. (2020). Effects of BA, NAA, and activated charcoal on micropropagation of Nepenthes mirabilis (Lour.) Druce. Acta Horticulturae, 1298, 281–285. https://doi.org/10.17660/actahortic.2020.1298.38

Sarmah, D., Kolukunde, S., Sutradhar, M., Singh, B. K., Mandal, T., & Mandal, N. (2017). A review on: In vitro cloning of orchids. International Journal of Current Microbiology and Applied Sciences, 6(8), 1909–1927. https://doi.org/10.20546/ijcmas.2017.609.235

Schwallier, R., van Wely, V., Baak, M., Vos, R., van Heuven, B. J., Smets, E., ..., & Gravendeel, B. (2020). Ontogeny and anatomy of the dimorphic pitchers of Nepenthes rafflesiana Jack. Plants, 9(11), 1603. https://doi.org/10.3390/plants9111603

Septasari, M., & Mercuriani, I. S. (2023). Inducing an axillary bud of dendrobium red emperor ‘prince’ with an addition of BAP in vitro. Indonesian Journal of Bioscience (IJOBI), 1(2), 74–84. https://doi.org/10.21831/ijobi.v1i2.216

Shrivastav, P., Prasad, M., Singh, T. B., Yadav, A., Goyal, D., Ali, A., & Dantu, P. K. (2020). Role of nutrients in plant growth and development. Contaminants in Agriculture: Sources, Impacts and Management, 43–59. https://doi.org/10.1007/978-3-030-41552-5_2

Siregar, D. A. (2018). Modifikasi konsentrasi nitrogen pada medium MS (Murashige Skoog) terhadap pembentukan kantong Nepenthes ampullaria Jack secara in vitro. Jurnal Education and Development, 6(1), 137–140. https://doi.org/10.37081/ed.v6i1.809

Suliyanto, Restianto, Y. E., Naufalin, L. R., Krisnaresanti, A., & Yunianty, A. (2022). Microfloriculture souvenir creative industry: Feasibility study. International Journal of Research-Granthaalayah, 10(11), 290–299. https://doi.org/10.29121/granthaalayah.v10.i11.2022.4923

Sun, Y., Sun, X., Pan, Y., Liu, C., Su, L., & Zhang, Z. (2025). Bioreactor-based liquid culture and production of konjac micro-corm. Horticulturae, 11(3), 235. https://doi.org/10.3390/horticulturae11030235

Tarigan, M. R. M., Azis, S., Tanjung, I. F., Pary, C., Adlini, M. N., Jayanti, U. N. A. D., …, & Ulfa, A. Y. (2023). Morphology and pitcher’s color Nepenthes in Batu Lubang Sibolga Area, North Sumatra Province, Indonesia. Biodiversitas, 24(4), 1953–1961. https://doi.org/10.13057/biodiv/d240403

Wardana, S. T. (2023). Morphological variations of Nepenthes mirabilis (Lour.) Druce in the peat swamp habitat. Jurnal Biologi Tropis, 23(3), 47–52. https://doi.org/10.29303/jbt.v23i3.4958

Wu, W., Du, K., Kang, X., & Wei, H. (2021). The diverse roles of cytokinins in regulating leaf development. Horticulture Research, 8(1), 118. https://doi.org/10.1038/s41438-021-00558-3

Ye, H., Li, C., Ye, W., Zeng, F., Liu, F., Wang, F., ..., & Li, J. (2021). Medicinal angiosperms of lardizabalaceae, sargentodoxaceae, menispermaceae, aristolochiaceae, and nepenthaceae. Common Chinese Materia Medica, 2, 185–233. https://doi.org/10.1007/978-981-16-2066-9_4

Yin, Y., Zhong, R., Li, Y., Guo, B., Li, L., Ma, G., ..., & Zeng, S. (2025). BAP regulates lateral bud outgrowth to promote tillering in Paphiopedilum callosum (Orchidaceae). BMC Plant Biology, 25(1), 1–18. https://doi.org/10.1186/S12870-025-06256-9

Zheleznichenko, T. V., Muraseva, D. S., Erst, A. S., Kuznetsov, A. A., Kulikovskiy, M. S., & Kostikova, V. A. (2023). The influence of solid and liquid systems in vitro on the growth and biosynthetic characteristics of microshoot culture of Spiraea betulifolia ssp. aemiliana. International Journal of Molecular Sciences 2023, 24(3), 2362. https://doi.org/10.3390/IJMS24032362

Refbacks

  • There are currently no refbacks.