Penggunaan Fitoremediasi dengan Sistem Up-Flow untuk Mereduksi Polutan pada Outlet Kolam Anaerob II Limbah Cair Pabrik Kelapa Sawit

Andina Pratiwi, Rijadi Subiantoro, Febrina Delvitasari

Abstract

Oil palm plantations are one of the commodity crops that have an important role in the economy in Indonesia, namely as an export commodity that generates foreign exchange in addition to oil and gas. The increase in world demand for oil palm commodity encourages the growth of oil palm industry so that estimates of liquid waste also increase. If the liquid waste is disposed of directly into the aquatic environment without proper management, it will have a negative impact. This study aims to find the best phytoremedian in reducing the pollutants of WWTP II anaerobic ponds in the oil palm mill industry and to get the reduction. Research activities took place from July 2020 to September 2020 in the field and Analysis Laboratory of the Lampung State Polytechnic. This study uses an up-flow system with a stagnant condition and is carried out on a laboratory scale by testing using descriptive methods. The phytoremedian used in this study were water nails (Azolla pinnata) (A1), water spinach (Ipomoea aquatica) (A2), cattail (Typha angustifolia) (A3) and water bamboo (Equisetum hyemale) (A4). The results showed that the best phytoremedian in reducing the observation variable of oil palm mill effluent outlet anaerobic pond II was water spinach (Ipomoea aquatica). Phytoremedian Ipomoea aquatica at the end of the treatment was able to reduce the COD value with a decrease percentage of 41.29%, increase the pH to 8.57, reduce the TSS value to 124 mg/L, the turbidity value to 21 mg/L, the total N value to 0.021 mg/L, the K value becomes 2.59 mg/L.

Keywords

Azolla pinnata; Equisetum hyemale; Ipomoea aquatica; Typha angustifolia

Full Text:

PDF

References

Amalero, E. G., Ingua, G. L., Erta, G. B., & Emanceau, P. L. (2003). Review article Methods for studying root colonization by introduced. Agronomie, 23(2007), 407–418. https://doi.org/10.1051/agro

Andrade, S. A. L., Abreu, C. A., De Abreu, M. F., & Silveira, A. P. D. (2004). Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Applied Soil Ecology, 26(2), 123–131. https://doi.org/10.1016/j.apsoil.2003.11.002

Aqilah, M., Rozaimah, S., Abdullah, S., & Abu, H. (2021). A constructed wetland system for bio-polishing oil palm mill effluent and its future research opportunities. Journal of Water Process Engineering, 41(April), 102043. https://doi.org/10.1016/j.jwpe.2021.102043

Ayesa, S. A., Chukwuka, K. S., & Odeyemi, O. O. (2018). Tolerance of Tithonia diversifolia and Chromolaena odorata in heavy metal simulated-polluted soils and three selected dumpsites. Toxicology Reports, 5(October), 1134–1139. https://doi.org/10.1016/j.toxrep.2018.11.007

Burd, G. I., Dixon, D. G., & Glick, B. R. (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46(3), 237–245. https://doi.org/10.1139/w99-143

Davamani, V., Indhu, C., Arulmani, S., Ezra, J., & Poornima, R. (2021). Hydroponic phytoremediation of paperboard mill wastewater by using vetiver ( Chrysopogon zizanioides ). Journal of Environmental Chemical Engineering, 9(4), 105528. https://doi.org/10.1016/j.jece.2021.105528

Fachrurozi, M., L.B. Utami, dan D. Suryani. 2010. Pengaruh variasi biomassa Pistia stratiotes L. terhadap penurunan kadar BOD, COD, dan TSS limbah cair tahu di Dusun Klero Sleman Yogyakarta. Fakultas Kesehatan Masyarakat Universitas Ahmad Dahlan. Yogyakarta. KESMAS. Vol.4 (1): 1-75.

Fathiyah, N., T.G. Pin, dan R. Saraswati. 2017. Pola spasial dan temporal Total Suspended Solid (TSS) di Estuari Cimandiri, Jawa Barat. Mahasiswa Departemen Geografi Fakultas MIPA Universitas Indonesia Kampus UI. Depok. Industrial Research Workshop and National Seminar Politeknik Negeri Bandung

Jeevanantham, S., Saravanan, A., Hemavathy, R. V., Kumar, P. S., Yaashikaa, P. R., & Yuvaraj, D. (2019). Removal of toxic pollutants from water environment by phytoremediation: A survey on application and future prospects. In Environmental Technology and Innovation (Vol. 13, pp. 264–276). Elsevier B.V. https://doi.org/10.1016/j.eti.2018.12.007

Karnanta, S., Solikin, M., & Purnama, H. (2021). Terraced Wetland Construction of Liquid Waste Pollution Countermeasures from Tofu Industry ( Case Study of Tofu Industry in Mojosongo , Surakarta ) Terraced Wetland Construction of Liquid Waste Pollution Countermeasures from Tofu Industry ( Case Study of. Journal of Physics: Conference Series, 1858. https://doi.org/10.1088/1742-6596/1858/1/012003

Keputusan Menteri Negara Kependudukan dan Lingkungan Hidup. 2004. Baku Mutu Limbah Cair Bagi Kegiatan Industri (KEP-51/MENLH/10/1995).

KLH Jepang/KLH Indonesia. 2013. Penanganan air limbah di pabrik PKS. Hasil studi kebijakan bersama Indonesia- Jepang (2011-2013). Sumatera Utara

Lestari, T., Apriyadi, R. Mustikarini, E. D. Saputra, W. & Merlin, Y. (2020). The application of palm-oil waste as organic materials on three pineapple accessions cultivated on post-tin mining land in Bangka Island, Indonesia. Nusantara Bioscience, 12(1), 40–45. https://doi.org/10.13057/nusbiosci/n120107

Mahmoudpour, M., Gholami, S., Ehteshami, M., & Salari, M. (2021). Evaluation of Phytoremediation Potential of Vetiver Grass ( Chrysopogon zizanioides ( L .) Roberty ) for Wastewater Treatment. Advances in Materials Science and Engineering.

Mustafa, H. M., & Hayder, G. (2021). Recent studies on applications of aquatic weed plants in phytoremediation of wastewater : A review article. Ain Shams Engineering Journal, 12(1), 355–365. https://doi.org/10.1016/j.asej.2020.05.009

Ng, Y. S., Juinn, D., & Chan, C. (2017). Wastewater phytoremediation by Salvinia molesta. Journal of Water Process Engineering, 15, 107–115. https://doi.org/10.1016/j.jwpe.2016.08.006

Perkebunan Indonesia Komoditas Kelapa Sawit 2015-2017. Jakarta. Hal.11.

Ren, C. G., Kong, C. C., Wang, S. X., & Xie, Z. H. (2019). Enhanced phytoremediation of uranium-contaminated soils by arbuscular mycorrhiza and rhizobium. Chemosphere, 217, 773–779. https://doi.org/10.1016/j.chemosphere.2018.11.085

Sánchez-Navarro, V., Zornoza, R., Faz, Á., & Fernández, J. A. (2020). A comparative greenhouse gas emissions study of legume and non-legume crops grown using organic and conventional fertilizers. Scientia Horticulturae, 260(September 2019), 108902. https://doi.org/10.1016/j.scienta.2019.108902

Sg, L., Jjo, O., R, A., & St, M. (2021). The potential of biochar to enhance concentration and utilization of selected macro and micro nutrients for chickpea (Cicer arietinum) grown in three contrasting soils. Rhizosphere, 17. https://doi.org/10.1016/j.rhisph.2020.100289

Zulfahmi, I., Nila, R., Huslina, F., & Rahmawati, L. (2021). Environmental Technology & Innovation Phytoremediation of oil palm mill effluent ( POME ) using water spinach ( Ipomoea aquatica Forsk ). Environmental Technology & Innovation, 21, 101260. https://doi.org/10.1016/j.eti.2020.101260