Pertumbuhan berbagai Macam Bahan Eksplan Kentang Atlantik secara In Vitro dengan Perlakuan IAA
Abstract
The Atlantic potato is the potato used in the food industry. Conventional potato propagation is constrained by the accumulation of pathogens, decreased quality of seed, and low propagation rates. Plant tissue culture is one of the appropriate method that can be used to solve these problem. This study aims to determine the most appropriate IAA concentration for various kinds of Atlantic potato explants. The study was conducted in July - August 2020 at the Tissue Culture Laboratory of the Pembangunan Nasional Veteran Yogyakarta University. Completely Randomized Design (CRD) was used as an experimental design with different combination of the concentration of IAA at 0,5; 1; and 1,5 ppm and the kind of explants namely shoot, middle, and base of the plantlet). Observation was conducted at 8 weeks after planting. Variables observed were plantlet height, number of nodes, number of branches, number of leaves, leave colour, root length, and dry weight of plantlet. The results showed that 1 ppm concentration of IAA with the middle of the plantlet could increase the number of node and the number of leaves of Atlantic potato plantlets. 0.5 ppm concentration of IAA were able to increase the plantlet height, number of branches, root length, and dry weight of Atlantic potatoes. Explants from the middle of the plantlet were able to increase the number of side shoots of Atlantic potato plantlets.
Keywords
Full Text:
PDFReferences
Aguilar-Hernández, V., & Loyola-Vargas, V. M. (2018). Advanced proteomic approaches to elucidate somatic embryogenesis. Frontiers in Plant Science, 871(November). https://doi.org/10.3389/fpls.2018.01658
Amarullah, M. R., Sudarsono, ., & Amarillis, S. (2019). Produksi dan Budidaya Umbi Bibit Kentang (Solanum tuberosum L.) di Pangalengan, Bandung, Jawa Barat. Buletin Agrohorti, 7(1), 93–99. https://doi.org/10.29244/agrob.v7i1.24753
Ashrafzadeh, S. (2020). In vitro grafting–twenty-first century’s technique for fruit tree propagation. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 70(5), 404–405. https://doi.org/10.1080/09064710.2020.1754452
Basuki, R. S., Khaririyatun, N., Sembiring, A., Nurmalinda, N., & Arshanti, I. W. (2020). Studi Adopsi Benih Kentang Bebas Virus Varietas Granola L. dari Balai Penelitian Tanaman Sayuran di Kabupaten Garut, Jawa Barat. Jurnal Hortikultura, 29(2), 241. https://doi.org/10.21082/jhort.v29n2.2019.p241-256
Bawa, G., Feng, L., Chen, G., Chen, H., Hu, Y., & Pu, T. (2020). Gibberellins and auxin regulate soybean hypocotyl elongation under low light and high-temperature interaction. Physiologia P, 170(3), 345–356. https://doi.org/10.1111/ppl.13158
Dewanto, H. A., Saraswati, D., & Hadjoeningtijas, O. D. (2019). Pertumbuhan kultur tunas aksilar kentang (Solanum tuberosum l.) dengan penambahan super fosfat dan kno3 pada media ab mix secara in vitro. Agritech: Jurnal Fakultas Pertanian Universitas Muhammadiyah Purwokerto, 20(2), 71. https://doi.org/10.30595/agritech.v20i2.3991
Enders, T. A., & Strader, L. C. (2015). Auxin activity: Past, present, and future. American Journal of Botany, 102(2), 180–196. https://doi.org/10.3732/ajb.1400285
Furnawanthi, I., Devianti, S. J., Nauly, D., Mardiyanto, R., & Elya, M. (2017). Respon pertumbuhan eksplan kentang (Solanum tuberosum L.) variestas AP-4 terhadap manitol sebagai media konservasi secara in vitro. Prosiding Seminar Nasional 2017 Fakultas Pertanian UMJ, May, 245–252.
Hidayat, Y. S., Efendi, D., & . S. (2018). Karakterisasi Morfologi Beberapa Genotipe Kentang (Solanum tuberosum) yang Dibudidayakan di Indonesia. Comm. Horticulturae Journal, 2(1), 28. https://doi.org/10.29244/chj.2.1.28-34
Hilman, Y., Suciantini, S., & Rosliani, R. (2019). Adaptation of Horticultural Crops to Climate Change in the Upland. Jurnal Penelitian Dan Pengembangan Pertanian, 38(1), 55. https://doi.org/10.21082/jp3.v38n1.2019.p55-64
Hou, J., Wu, Y., Shen, Y., Mao, Y., Liu, W., Zhao, W., Mu, Y., Li, M., Yang, M., & Wu, L. (2015). Plant regeneration through somatic embryogenesis and shoot organogenesis from immature zygotic embryos of Sapium sebiferum Roxb. Scientia Horticulturae, 197, 218–225. https://doi.org/10.1016/j.scienta.2015.09.040
Jahn, L., Hofmann, U., & Ludwig-Müller, J. (2021). Indole-3-acetic acid is synthesized by the endophyte cyanodermella asteris via a tryptophan-dependent and-independent way and mediates the interaction with a non-host plant. International Journal of Molecular Sciences, 22(5), 1–19. https://doi.org/10.3390/ijms22052651
Joseph K., R., Nabachandra Singh, L., & Priya Devi, K. (2018). Integration of different sources of organic manure and micro-nutrients on growth, yield and quality of potato (Solanumtuberosum L.) grown under new alluvial soil condition. Indian Journal of Agricultural Research, 52(2), 172–176. https://doi.org/10.18805/IJARe.A-4607
Khalid, A., Arshad, M., & Zahir, Z. A. (2004). Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, 96(3), 473–480. https://doi.org/10.1046/j.1365-2672.2003.02161.x
Kong, E. Y. Y., Biddle, J., Foale, M., Panis, B., & Adkins, S. W. (2021). The potential to propagate coconut clones through direct shoot organogenesis: A review. Scientia Horticulturae, 289(January), 110400. https://doi.org/10.1016/j.scienta.2021.110400
Li, J., Chai, M., Zhu, X., Zhang, X., Li, H., Wang, D., & Xing, Q. (2019). Cloning and expression analysis of LoCCD8 during IAA-induced bulbils outgrowth in lily ( Oriental Hybrid ‘ Sorbonne ’). Journal of Plant Physiology, 236(March), 39–50. https://doi.org/10.1016/j.jplph.2019.03.002
Liu, H. Jiu, Huang, C. Ping, Tong, P. Jiang, Yang, X., Cui, M. Ming, & Cheng, Z. Hui. (2020). Response of axillary bud development in garlic (Allium sativum L.) to seed cloves soaked in gibberellic acid (GA3) solution. Journal of Integrative Agriculture, 19(4), 1044–1054. https://doi.org/10.1016/S2095-3119(20)63156-2
Ludwig-Müller, J. (2011). Auxin conjugates: Their role for plant development and in the evolution of land plants. Journal of Experimental Botany, 62(6), 1757–1773. https://doi.org/10.1093/jxb/erq412
Lv, Y., Li, Y., Liu, X., & Xu, K. (2020). Photochemistry and proteomics of ginger (Zingiber officinale Roscoe) under drought and shading. Plant Physiology and Biochemistry, 151(October 2019), 188–196. https://doi.org/10.1016/j.plaphy.2020.03.021
Martínez-López, M., García-Pérez, A., Gimeno-Páez, E., Prohens, J., Vilanova, S., & García-Fortea, E. (2021). Screening of suitable plant regeneration protocols for several capsicum spp. Through direct organogenesis. Horticulturae, 7(9). https://doi.org/10.3390/horticulturae7090261
Méndez-Hernández, H. A., Quintana-Escobar, A. O., Uc-Chuc, M. A., & Loyola-Vargas, V. M. (2021). Genome-Wide Analysis, Modeling, and Identification of Amino Acid Binding Motifs Suggest the Involvement of GH3 Genes during Somatic Embryogenesis of Coffea canephora. Plants, 10(10), 2034. https://doi.org/10.3390/plants10102034
Meng, C., Wang, F., Yang, K., Shock, C. C., Engel, B. A., Zhang, Y., Tao, L., & Gu, X. (2020). Small wetted proportion of drip irrigation and non-mulched treatment with manure application enhanced methane uptake in upland field. Agricultural and Forest Meteorology, 281(October 2019). https://doi.org/10.1016/j.agrformet.2019.107821
Moriwaki, T., Falcioni, R., André, F., Tanaka, O., Aparecida, K., Cardoso, K., Souza, L. A., Benedito, E., Rafael, M., Moacir, C., Camargos, W., & Vegetal, L. D. E. (2019). Nitrogen-improved photosynthesis quantum yield is driven by increased thylakoid density , enhancing green light absorption. Plant Science, 278(July 2018), 1–11. https://doi.org/10.1016/j.plantsci.2018.10.012
Munggarani, M., Suminar, E., Nuraini, A., & Mubarok, S. (2018). Multiplikasi Tunas Meriklon Kentang Pada Berbagai Jenis dan Konsentrasi Sitokinin. Agrologia, 7(2). https://doi.org/10.30598/a.v7i2.766
Nawaz, K., Chaudhary, R., Sarwar, A., Ahmad, B., Gul, A., Hano, C., Abbasi, B. H., & Anjum, S. (2021). Melatonin as master regulator in plant growth, development and stress alleviator for sustainable agricultural production: Current status and future perspectives. Sustainability (Switzerland), 13(1), 1–25. https://doi.org/10.3390/su13010294
Naz, M., Sughar, G., Soomro, Z. A., Ahmed, I., Seema, N., Nizamani, G. S., Saboohi, & Nizamani, M. R. (2017). Somatic embryogenesis and callus formation in sugarcane (Saccharum SPP L.) using different concentration of 2, 4-D and RAPD analysis of plants regenerates. Indian Journal of Agricultural Research, 51(2), 93–102. https://doi.org/10.18805/ijare.v0iOF.7637
Parab, A. R., Chew, B. L., Yeow, L. C., & Subramaniam, S. (2021). Organogenesis on apical buds in common fig (Ficus carica) var. Black Jack. Electronic Journal of Biotechnology, 54, 69–76. https://doi.org/10.1016/j.ejbt.2021.10.001
Ryu, C. M., Hu, C. H., Locy, R. D., & Kloepper, J. W. (2005). Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant and Soil, 268(1), 285–292. https://doi.org/10.1007/s11104-004-0301-9
Sevillano, D., Romero-Lastra, P. T., Casado, I., Alou, L., González, N., Collado, L., Domínguez, A. A., Arias, C. M., Corvillo, I., Armijo, F., Romero, M., & Maraver, F. (2018). Impact of the biotic and abiotic components of low mineralized natural mineral waters on the growth of pathogenic bacteria of human origin: A key to self-control of spa water quality. Journal of Hydrology, 566(September), 227–234. https://doi.org/10.1016/j.jhydrol.2018.09.008
Tohge, T., Watanabe, M., Hoefgen, R., & Fernie, A. R. (2013). Shikimate and phenylalanine biosynthesis in the green lineage. Frontiers in Plant Science, 4(MAR), 1–13. https://doi.org/10.3389/fpls.2013.00062
Vandenbussche, F., Vriezen, W. H., Smalle, J., Laarhoven, L. J. J., Harren, F. J. M., & Straeten, D. Van Der. (2020). Ethylene and Auxin Control the Arabidopsis Response to Decreased Light Intensity 1. Plant Physiology, 133(October 2003), 517–527. https://doi.org/10.1104/pp.103.022665.and
Wang, D., Cheng, L., Wang, Y., & Zhang, F. (2018). Comparative Proteomic Analysis of Potato (Solanum tuberosum L.) Tuberization In Vitro Regulated by IAA. American Journal of Potato Research, 95(4), 395–412. https://doi.org/10.1007/s12230-018-9640-6
Xu, X., Van Lammeren, A. A. M., Vermeer, E., & Vreugdenhil, D. (1998). the Role of Gibberellin, Abscisic Acid, and Sucrose in the Regulation of Potato Tuber Formation in Vitro. Plant Physiology, 117(2), 575–584. https://doi.org/10.1104/pp.117.2.575
Zahid, N. A., Jaafar, H. Z. E., & Hakiman, M. (2021). Alterations in microrhizome induction, shoot multiplication and rooting of ginger (Zingiber officinale roscoe) var. bentong with regards to sucrose and plant growth regulators application. Agronomy, 11(2). https://doi.org/10.3390/agronomy11020320
Zhang, Z., Zhou, W., & Li, H. (2005). The role of GA, IAA and BAP in the regulation of in vitro shoot growth and microtuberization in potato. Acta Physiologiae Plantarum, 27(3), 363–369. https://doi.org/10.1007/s11738-005-0013-7