SPATIOTEMPORAL ANALYSIS OF NO₂, SO₂, AND CO DISTRIBUTION AFFECTING AIR QUALITY IN GREATER JAKARTA

Robet Triarjunet, Syefiara Hania Yumnaristya, Arif Rohman, Andri N.R Mardiah

Abstract

According to the WHO, nearly the entire global population, at approximately 97%, is exposed to air contaminated with pollutants exceeding the WHO guideline threshold. Air pollution results from the coalescence of pollutants with atmospheric air and has become a global challenge, primarily impacting the most significant urban areas worldwide. The Greater Jakarta, or Jabodetabek, is the world's second-largest metropolitan region, with a population of around 34.6 million distributed across 14 municipalities and cities. The high-intensity human activities in Greater Jakarta have severely deteriorated the air quality. This study employs a holistic approach, utilising spatiotemporal analysis and quantitative-descriptive methods to investigate the atmospheric concentrations of CO, NO₂, and SO₂ in Greater Jakarta and its surrounding areas. The spatial distribution patterns of pollutants and their driving factors, including stationary and climatic factors, are investigated during July-December 2023. Results indicated that CO, NO₂, and SO₂ concentrations are significantly above the thresholds defined by the WHO, particularly during the dry season. It is found that the combination of stationary sources, including coal-fired power plants and industrial areas, along with climatic factors, significantly affects pollutant dispersion. These findings underscore the urgent need for stricter emission controls in coal-fired power plants and industrial areas to mitigate the effects of air pollution on public health.

Keywords

pollution; jabodetabek; climate aspect

Full Text:

PDF

References

Abdillah, M. R., Sarli, P. W., Firmansyah, H. R., Sakti, A. D., Fajary, F. R., Muharsyah, R., & Sudarman, G. G. (2022). Extreme Wind Variability and Wind Map Development in Western Java, Indonesia. International Journal of Disaster Risk Science, 13(3), 465–480. https://doi.org/10.1007/s13753-022-00420-7

Aguilar-Dodier, L. C., Castillo, J. E., Quintana, P. J. E., Montoya, L. D., Molina, L. T., Zavala, M., Almanza-Veloz, V., & Rodríguez-Ventura, J. G. (2020). Spatial and temporal evaluation of H2S, SO₂ and NH3 concentrations near Cerro Prieto geothermal power plant in Mexico. Atmospheric Pollution Research, 11(1), 94–104. https://doi.org/10.1016/j.apr.2019.09.019

Badan Riset Inovasi Nasional. (2023). Tanggap Darurat Polusi Udara, BRIN Kaji Kembali Rencana Penerapan Pajak Karbon. https://www.brin.go.id/news/116190/tanggap-darurat-polusi-udara-brin-kaji-kembali-rencana- penerapan-pajak-karbon

Biagi, B., Brattich, E., Cintolesi, C., Barbano, F., & Di Sabatino, S. (2025). Dynamical and chemical impacts of urban green areas on air pollution in a city environment. Urban Climate, 60, 102343. https://doi.org/10.1016/j.uclim.2025.102343

Demographia World Urban Areas. (2023).

Filonchyk, M., P. Peterson, M., Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China, Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China, & Department of Geography and Geology, University of Nebraska Omaha, Omaha NE 68182, USA. (2024). Investigation of a NOx emission from coal power plants in Texas, United States and its impact on the environment. China Geology, 7(0),1–10. https://doi.org/10.31035/CG20230093

Gopikrishnan, G. S., & Kuttippurath, J. (2025). Impact of the National Clean Air Programme (NCAP) on the particulate matter pollution and associated reduction in human mortalities in Indian cities. Science of The Total Environment, 968, 178787. https://doi.org/10.1016/j.scitotenv.2025.178787

Guo, D., Wang, R., & Zhao, P. (2020). Spatial distribution and source contributions of PM2.5 concentrations in Jincheng, China. Atmospheric Pollution Research, 11(8), 1281–1289. https://doi.org/10.1016/j.apr.2020.05.004

Guo, J., Ren, H., Zheng, Y., Lu, S., & Dong, J. (2020). Evaluation of Land Surface Temperature Retrieval from Landsat 8/TIRS Images before and after Stray Light Correction Using the SURFRAD Dataset. Remote Sensing, 12(6), 1023. https://doi.org/10.3390/rs12061023

Hei, W., Li, X., Gao, G., Wang, S., Zhang, R., & Wang, K. (2022). Air Pollutants and CO2 Emissions in Industrial Parks and Evaluation of Their Green Upgrade on Regional Air Quality Improvement: A Case Study of Seven Cities in Henan Province. Atmosphere, 13(3), 383. https://doi.org/10.3390/atmos13030383

Hernández-Ceballos, M. A., Rubino, M., Sirignano, C., Chianese, E., & Riccio, A. (2025). The cause-effect relationship between synoptic and local wind patterns and PM10 concentrations in the complex-orography urban area of Naples (Italy). City and Environment Interactions, 27, 100200. https://doi.org/10.1016/j.cacint.2025.100200

John, C. K., Ajibade, F. O., Ajibade, T. F., Kumar, P., Fadugba, O. G., & Adelodun, B. (2025). The impact of international agreements and government policies on collaborative management of environmental pollution and carbon emissions in the transportation sector. Environmental Impact Assessment Review, 114, 107930. https://doi.org/10.1016/j.eiar.2025.107930

Kansal, A., Khare, M., & Sharma, C. S. (2011). Air quality modelling study to analyse the impact of the World Bank emission guidelines for thermal power plants in Delhi. Atmospheric Pollution Research, 2(1),99–105. https://doi.org/10.5094/APR.2011.012

Kementerian Dalam Negeri RI. (2023). GIS Dukcapil Kementerian Dalam Negeri [Map]. https://gis.dukcapil.kemendagri.go.id/peta

Kementerian Perhubungan RI. (2022). Kemenhub Gencar Kembangkan Transportasi Massal di Jabodetabek Kementerian Perhubungan Republik Indonesia. https://dephub.go.id/post/read/kemenhub-gencar-kembangkan-transportasi-massal-di-jabodetabek

Kementerian Perindustrian. (2022). Daftar Kawasan Industri. https://kemenperin.go.id/kawasan

Kusumaningtyas, S. D. A., Aldrian, E., Wati, T., Atmoko, D., & Sunaryo, S. (2018). The Recent State of Ambient Air Quality in Jakarta. Aerosol and Air Quality Research, 18(9), 2343–2354. https://doi.org/10.4209/aaqr.2017.10.0391

Lange, K., Richter, A., Schönhardt, A., Meier, A. C., Bösch, T., Seyler, A., Krause, K., Behrens, L. K., Wittrock, F., Merlaud, A., Tack, F., Fayt, C., Friedrich, M. M., Dimitropoulou, E., Van Roozendael, M., Kumar, V., Donner, S., Dörner, S., Lauster, B., … Burrows, J. P. (2023). Validation of Sentinel-5P TROPOMI tropospheric NO₂ products by comparison with NO₂ measurements from airborne imaging DOAS, ground-based stationary DOAS, and mobile car DOAS measurements during the S5P-VAL-DE-Ruhr campaign. Atmospheric Measurement Techniques, 16(5), 1357–1389. https://doi.org/10.5194/amt-16-1357-2023

Latsch, M., Richter, A., Eskes, H., Sneep, M., Wang, P., Veefkind, P., Lutz, R., Loyola, D., Argyrouli, A., Valks, P., Wagner, T., Sihler, H., Van Roozendael, M., Theys, N., Yu, H., Siddans, R., & Burrows, J. P. (2022). Intercomparison of Sentinel-5P TROPOMI cloud products for tropospheric trace gas retrievals. Atmospheric Measurement Techniques, 15(21), 6257–6283. https://doi.org/10.5194/amt-15-6257-2022

Lestari, P., Arrohman, M. K., Damayanti, S., & Klimont, Z. (2022). Emissions and spatial distribution of air pollutants from anthropogenic sources in Jakarta. Atmospheric Pollution Research, 13(9), 101521. https://doi.org/10.1016/j.apr.2022.101521

Lestari, P., Damayanti, S., & Arrohman, M. K. (2020). Emission Inventory of Pollutants (CO, SO₂ , PM2.5 , and NOX ) In Jakarta Indonesia. IOP Conference Series: Earth and Environmental Science, 489(1), 012014. https://doi.org/10.1088/1755-1315/489/1/012014

Liu, F., Duncan, B. N., Krotkov, N. A., Lamsal, L. N., Beirle, S., Griffin, D., McLinden, C. A., Goldberg, D. L., & Lu, Z. (2020). A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide. Atmospheric Chemistry and Physics, 20(1), 99–116. https://doi.org/10.5194/acp-20-99-2020

Liu, T.-L., Flückiger, B., & De Hoogh, K. (2022). A comparison of statistical and machine-learning approaches for spatiotemporal modeling of nitrogen dioxide across Switzerland. Atmospheric Pollution Research, 13(12), 101611. https://doi.org/10.1016/j.apr.2022.101611

Peraturan Presiden (Perpres) Nomor 60 Tahun 2020 Tentang Rencana Tata Ruang Kawasan Perkotaan Jakarta, Bogor, Depok, Tangerang, Bekasi, Puncak, Dan Cianjur (2020).

Pravitasari, A. E., Saizen, I., Tsutsumida, N., Rustiadi, E., & Pribadi, D. O. (2015). Local spatially dependent driving forces of urban expansion in an emerging asian megacity: The case of greater Jakarta (Jabodetabek). Journal of Sustainable Development, 8(1), 108–119. https://doi.org/10.5539/jsd.v8n1p108

PT PLN (Persero). (2018, November 2). Keandalan Pasokan Listrik jadi Kunci Pengembangan Kawasan Industri Modern. PT PLN (Persero). https://web.pln.co.id/cms/media/siaran-pers/2018/11/keandalan-pasokan-listrik-jadi-kunci-pengembangan-kawasan-industri-modern/

Ren, S., & Luo, D. (2022). Coupling of Wind and Potential Temperature in an Ekman Model in the Stratified Atmospheric Boundary Layer. Journal of the Atmospheric Sciences, 79(3), 649–662. https://doi.org/10.1175/JAS-D-21-0049.1

Rowland, O. E. (2024). Comparative analysis of meteorological parameters and their relationship with NO₂, PM10, PM2.5 and O3 concentrations at selected urban air quality monitoring stations in Krakow, Paris, and Milan. Discover Environment, 2(1), 75. https://doi.org/10.1007/s44274-024-00060-2

Ruhiat, F., & Heryadi, D. (2019). Strategi NGO lingkungan dalam menangani polusi udara di Jakarta (Greenpeace Indonesia). Andalas Journal of International Studies (AJIS), 8(1), 16–30. https://doi.org/10.25077/ajis.8.1.16-30.2019

Sambodo, M. T., Silalahi, M., & Firdaus, N. (2024). Investigating technology development in the energy sector and its implications for Indonesia. Heliyon, 10(6), e27645. https://doi.org/10.1016/j.heliyon.2024.e27645

Sikorski, J. J., Haughton, J., & Kraft, M. (2017). Blockchain technology in the chemical industry: Machine-to-machine electricity market. Applied Energy, 195, 234–246. https://doi.org/10.1016/j.apenergy.2017.03.039

Siloam Hospitals. (2024). Waspada! Risiko Kanker Paru-Paru Karena Polusi Udara. Waspada! Risiko Kanker Paru-Paru Karena Polusi Udara. https://www.siloamhospitals.com/informasi-siloam/artikel/risiko-kanker-paru-paru-karena-polusi-udara

Son, R., Stratoulias, D., Kim, H. C., & Yoon, J.-H. (2023). Estimation of surface Pm2. 5 concentrations from atmospheric gas species retrieved from tropomi using deep learning: Impacts of fire on air pollution over Thailand. Atmospheric Pollution Research, 14(10), 101875. https://doi.org/10.1016/j.apr.2023.101875

Songsom, V., Jaruk, P., & Suteerasak, T. (2025). Examining the spatiotemporal dynamics of urban heat island and its impact on air pollution in Thailand. Environmental Challenges, 19, 101120. https://doi.org/10.1016/j.envc.2025.101120

Tian, X., Cui, K., Sheu, H.-L., Hsieh, Y.-K., & Yu, F. (2021). Effects of Rain and Snow on the Air Quality Index, PM2.5 Levels, and Dry Deposition Flux of PCDD/Fs. Aerosol and Air Quality Research, 21(8), 210158. https://doi.org/10.4209/aaqr.210158

Triarjunet, R., & Ahyuni, A. (2022). Pengaruh Unsur Cuaca Terhadap Persebaran Kasus Demam Berdarah Dengue (Dbd) di Kota Padang Tahun 2020. JURNAL BUANA, 6(3), 672–685. https://doi.org/10.24036/buana.v6i3.2414

Tritamtama, K. A., Sembiring, F. E. S., Choiruddin, A., & Patria, H. (2023). Analysis of Air Pollution (SO₂) at Some Point of Congestion in DKI Jakarta. Disease Prevention and Public Health Journal, 17(1), 82–92. https://doi.org/10.12928/dpphj.v17i1.6147

WHO. (2021). WHO’s Global Air-Quality Guidelines. 368(9544), 1302.

Zender-Świercz, E., Galiszewska, B., Telejko, M., & Starzomska, M. (2024). The effect of temperature and humidity of air on the concentration of particulate matter—PM2.5 and PM10. Atmospheric Research, 312, 107733. https://doi.org/10.1016/j.atmosres.2024.107733

Refbacks

  • There are currently no refbacks.