SCS-CN MODEL FOR QUANTIFYING SURFACE RUNOFF POTENTIAL IN THE ECOREGION SEGMENTATION OF BANTUL REGENCY

Faridah Nur Isnaini, Alfina Lismadanti, Katyusha Fiore, Lisa Mustafidatul Fauziah, Michelle Ruth Boru Girsang, Muhammad Farhan Athaya, Satrio Budiman, Tuhu Satrio Nugroho, Mohammad Pramono Hadi

Abstract

The role of surface air is pivotal within the framework of human livelihoods, necessitating a thorough examination of the potentiality inherent in surface water resources. This study aims to ascertain the estimations of surface runoff potential within Bantul Regency for the year 2020, serving as a watershed area, employing the Soil Conservation Service-Curve Number (SCS-CN) model grounded in ecoregion segmentation. Empirical data pertaining to spatial distribution of rainfall, soil types, and land use are meticulously analyzed to delineate hydrological soil group (HSG) and corresponding curve numbers (CN). The geospatial integration of these datasets is overlaid, facilitating landform mapping. Notably, the CN values are predicated upon three distinct Antecedent moisture conditions (AMC), delineated as AMC I, II, III denoting dry, normal, and wet conditions, respectively. The research findings reveal that surface runoff volume within Bantul Regency is predominantly concentrated within the landform expanse characterized as F2-Qmi, registering at 119,971,277.78 m3 during the rainy season and 376,473 m3 during the dry season. By contrast, the lowest runoff volume is observed in M1-Qa, amounting to 126,811.85 m3 during the rainy season and 0.61 m3 during the dry season. To ensure the availability of potential surface runoff influenced by various ecoregions, it is essential to conduct detailed mapping, implement ecosystem conservation, construct reservoirs in dry areas, and engage communities through education and supportive zoning policies for sustainable water management.

Keywords

curve number; landform; seasonal variations; surface runoff volume

Full Text:

PDF

References

Adi, R. N., & Setiawan, O. (2010). Penentuan Zonasi Tataguna Air Tanah di Kabupaten Bantul, Daerah Istimewa Yogyakarta. Jurnal Penelitian Hutan dan Konservasi Alam, 7(4): 315-339. doi: 10.20886/jphka.2010.7.4.315-339

Adji, T. N. (2006). Peranan Geomorfologi dalam Kajian Kerentanan Air Bawah Tanah Karst. Indonesian Cave and Karst Journal, 2(1), 64–74. doi: 10.31227/osf.io/zancv

Appels, W. M., Bogaart, P. W., & van der Zee, S. E. A. T. M. (2017). Feedbacks Between Shallow Groundwater Dynamics and Surface Topography on Runoff Generation in Flat Fields. Water Resources Research, 53(12), 10336–10353. doi: 10.1002/2017WR020727

Asdak, C. (2020). Hidrologi dan Pengelolaan Daerah Aliran Air Sungai: Edisi Revisi Kelima. Yogyakarta: Gadjah Mada University Press.

Borisova, T., Cutillo, M., Beggs, K., & Hoenstine, K. (2020). Addressing the Scarcity of Traditional Water Sources through Investments in Alternative Water Supplies: Case Study from Florida. Water, 12(8), 2089. doi:10.3390/w12082089

David, D. (2016). An Approach to Analysing Plot Scale Infiltration and Runoff Responses to Rainfall of Fluctuating Intensity. Hydrological Processes, 31(1), 191–206. doi: 10.1002/hyp.10990

Erena, S. H. & Worku, H. (2019). Dynamics of Land Use Land Cover and Resulting Surface Runoff Management for Environmental Flood Hazard Mitigation: The Case of Dire Daw City, Ethiopia. Journal of Hydrology: Regional Studies, 22, 1–10. doi: 10.1016/j.ejrh.2019.100598

Haghnazari, F., Shahgholi, H., & Feizi, M. (2015). Factors Affecting the Infiltration of Agricultural Soils: Review. International Journal of Agronomy and Agricultural Research (IJAAR), 6(5), 21–35.

Hemathilake, D. M. K. S & Gunathilake, D. M. C. C. (2022). Agricultural Productivity and Food Supply to Meet Increased Demands. Future Foods: Global Trends, Opportunities, and Sustainability Challenges, 539–553. doi: 10.1016/B978-0-323-91001-9.00016-5

Hidayah, E., Widiarti, W. Y., & Ammarulsyah, A. R. (2022). Zonasi Tingkat Kerawanan Banjir Bandang dengan Sistem Informasi Geografis di Sub-DAS Kaliputih Kabupaten Jember. Jurnal Teknik Pengairan, 13(2), 273–282. doi: 10.21776/ub.pengairan.2022.013.02.12

Hu, S., Fan, Y., & Zhang, T. (2020). Assessing the Effect of Land Use Change on Surface Runoff in a Rapidly Urbanized City: A Case Study of the Central Area of Beijing. Land, 9(1), 17. doi: 10.3390/land9010017

Kang, M., & Yoo, C. (2020). Application of the SCS–CN Method To the Hancheon Basin On The Volcanic Jeju Island, Korea. Water, 12(12), 3350. doi: 10.3390/w12123350

Kim, J., Johnson, L. E., Cifelli, R., Choi, Jeongho., & Chandrasekar, V. (2018). Derivation of Soil Moisture Recovery Relation Using Soil Conservation Service (SCS) Curve Number Method. Water, 10(7), 833. doi: 10.3390/w10070833

Krajewski, A., Sikorska-Senoner, A. E., Hejduk, A., & Hejduk, L. (2020). Variability of the Initial Abstraction Ratio in an Urban and an Agroforested Catchment. Water (Switzerland), 12(2), 1-15. doi: 10.3390/w12020415

Larraz, B., Rubio, N. G., Gamez, M., Sauvage, S., Cakir, R., Raimonet, M., & Perez, J. M. S. (2024). Socio-Economic Indicators for Water Management in the South-West Europe Territory: Sectorial Water Productivity and Intensity in Employment. Water, 16(7), 959. doi: 10.3390/w16070959

McCuen, R. H. (1998). Hydrologic Analysis and Design: 2nd edition. New Jersey, Prentice Hall.

Mohamed E. S., Abdellatif, M. A., Sameh, K. A. E., & Khalil, M. M. N. (2020). Estimation of Surface Runoff Using NRCS Curve Number in Some Areas in Northwest Coast, Egypt. E3S Web of Conferences 167, 02002. doi: 10.1051/e3sconf/202016702002

Motovilov, Y. G., Gottschalk, L., Engeland, K., & Rodhe, A. (1999). Validation of A Distributed Hydrological Model Against Spatial Observations. Agricultural and Forest Meteorology, 98, 257–277. doi: 10.1016/S0168-1923(99)00102-1

Munawir, A., Jauhari A., Kurniawan, M. O., & Muhammad, A. N. (2019). Analisis Akuifer Anggota Batugamping Lam Kabeu-Pidie dengan Metode Porositas Sekunder. Prosiding Seminar Nasional Manajemen Bencana di Era Revolusi Industri 5.0, 10 Agustus 2019, Fakultas Geografi UMP.

Permatasari, R., Arwin, & Natakusumah, D. K. (2017). Pengaruh Perubahan Penggunaan Lahan terhadap Rezim Hidrologi DAS (Studi Kasus: DAS Komering). Jurnal Teknik Sipil, 24(1): 91-98. doi: 10.5614/jts.2017.24.1.11

Prabhu, N., Kumar, T.M., & Inayathulla, M. (2020). Runoff Estimation for Arkavathi Valley, Hebbala Valley, Kc Valley, South Pennar Valley, Vrishabhavathi Valley by Using Soil Conservation Services Curve Number Method (SCS-CN). Water Energy International, 63(2), 57-66.

Pratiknyo, P. (2016). Proyeksi Ketersediaan dan Kebutuhan Air Industri di Kab. Tangerang. Seminar Nasional Kebumian XI, 3-4 November 2016, Fakultas Teknologi Mineral, UPN ”Veteran” Yogyakarta, Yogyakarta.

Shrestha, S., Cui, S., Xu, L., Wang, L., Manadhar, B., & Ding, S. (2021). Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN Method: A Case Study of Xiamen City, China. Land, 10(8), 839. doi: 10.3390/land10080839

Sitorus, S. R. P., Mulyani, M., & Panuju, D. R. (2011). Konversi Lahan Pertanian dan Keterkaitannya dengan Kelas Kemampuan Lahan serta Hirarki Wilayah di Kabupaten Bandung Barat. Jurnal Tanah Lingkungan, 13(2), 49-57. doi: 10.29244/jitl.13.2.49-57

Sitterson, J., Knightes, C., Parmar, R., Wolfe, K., Muche, M., & Avant, B. (2018). An Overview of Rainfall-Runoff Model Types. International Congress on Environmental Modelling and Software, 27 Juni 2018, Brigham Young University

Wang, J. J., Ding, J. L., Zhang, Z., & Chen, W. Q. (2017). Improved Algorithm of SCS-CN Model Parameters in Typical Inland River Basin in Central Asia. In IOP Conference Series: Earth and Environmental Science, 57(1), 012051. doi: 10.1088/1755-1315/57/1/012051

Zhao, L., Hou, R., Wu, F., & Keesstra, S. (2018). Effect of Soil Surface Roughness on Infiltration Water, Ponding and Runoff on Tilled Soils Under Rainfall Simulation Experiments. Soil and Tillage Research, 179, 47–53. doi: 10.1016/j.still.2018.01.009

Refbacks

  • There are currently no refbacks.