Recent Advancements in Ocean Current Turbine Blade Design: A Review of Geometrical Shape, Performance and Potential Development using CAE
Abstract
Full Text:
PDFReferences
1. International Energy Agency (IEA), World Energy Outlook 2023, Paris: Organisation for Economic Co-operation and Development, 2023.
2. S. Delbecq, J. Fontane, N. Gourdain, T. Planès, and F. Simatos, "Sustainable aviation in the context of the Paris Agreement: A review of prospective scenarios and their technological mitigation levers," Prog. Aerosp. Sci., vol. 141, article no. 100920, 2023.
3. W. Przychodzen and J. Przychodzen, "Determinants of renewable energy production in transition economies: A panel data approach," Energy, vol. 191, article no. 116583, 2020.
4. S. Yao, C. Li, and Y. Wei, "Design and optimization of a zero carbon emission system integrated with the utilization of marine engine waste heat and LNG cold energy for LNG-powered ships," Appl. Therm. Eng., vol. 231, article no. 120976, 2023.
5. Z. Liu, Y. Zhou, J. Yan, and M. Tostado-Véliz, "Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities," Energy, vol. 284, article no. 128362, 2023.
6. IRENA and CPI, Global landscape of renewable energy finance 2023, Abu Dhabi: International Renewable Energy Agency, 2023.
7. IRENA, Renewable Capacity Statistics 2024, Abu Dhabi: International Renewable Energy Agency, 2024.
8. IRENA, The Global Atlas for Renewable Energy a Decade in the Making About Irena, Abu Dhabi: International Renewable Energy Agency, 2024.
9. R. Kempener and F. Neumann, Tidal Energy: Technology Brief, Abu Dhabi: International Renewable Energy Agency, 2014.
10. D. J. Olinger and Y. Wang, "Hydrokinetic energy harvesting using tethered undersea kites," J. Renew. Sustain. Energy, vol. 7, no. 4, article no. 043114, 2015.
11. A. Roberts, B. Thomas, P. Sewell, Z. Khan, S. Balmain, and J. Gillman, "Current tidal power technologies and their suitability for applications in coastal and marine areas," J. Ocean Eng. Mar. Energy, vol. 2, pp. 227-245, 2016.
12. IRENA, Fostering a blue economy: Offshore renewable energy, Abu Dhabi: International Renewable Energy Agency, 2020.
13. IRENA, Scaling Up Investments in Ocean Energy Technologies, Abu Dhabi: International Renewable Energy Agency, 2023.
14. T. Xie, T. Wang, Q. He, D. Diallo, and C. Claramunt, "A review of current issues of marine current turbine blade fault detection," Ocean Eng., vol. 218, article no. 108194, 2020.
15. Z. Zhou, M. Benbouzid, J. F. Charpentier, F. Scuiller, and T. Tang, "Developments in large marine current turbine technologies – A review," Renew. Sustain. Energy Rev., vol. 71, pp. 852-858, 2017.
16. N. Amiri, M. Shaterabadi, K. R. Kashyzadeh, and M. Chizari, "A comprehensive review on design, monitoring, and failure in fixed offshore platforms," J. Mar. Sci. Eng., vol. 9, no. 12, article no. 1349, 2021.
17. IRENA, Innovation outlook: Ocean energy technologies, Abu Dhabi: International Renewable Energy Agency, 2020.
18. F. Johnson, MeyGen Phase 1A-Vessel Management & Navigation Safety Plan: Operations Confidential-External MeyGen Phase 1A-Vessel Management & Navigation Safety Plan: Operations Document History and Status, Edinburgh: MeyGen, 2020.
19. F. Johnson, Operations phase emergency response cooperation plan between MeyGen and HM Coastguard for the MeyGen Phase 1 Array, Edinburgh: MeyGen, 2023.
20. IRENA, Offshore renewables: An action agenda for deployment, Abu Dhabi: International Renewable Energy Agency, 2021.
21. F. A. Prasetyo, M. A. Kurniawan, and S. Komariyah, “Indonesian Seastate Condition and Its Wave Scatter Map,” in Asia Pacific Technical Exchange and Advisory Meeting on Marine Structures (MSMI 2018), Istanbul, Turkey, 2018.
22. IRENA, Wave Energy: Technology Brief, Abu Dhabi: International Renewable Energy Agency, 2014.
23. E. D. P. Kirinus and W. C. Marques, "Viability of the application of marine current power generators in the south Brazilian shelf," Appl. Energy, vol. 155, pp. 23-34, 2015.
24. IRENA, Ocean Thermal Energy Conversion: Technology Brief, Abu Dhabi: International Renewable Energy Agency, 2014.
25. R. Adiputra, T. Utsunomiya, J. Koto, T. Yasunaga, and Y. Ikegami, "Preliminary design of a 100 MW-net ocean thermal energy conversion (OTEC) power plant study case: Mentawai island, Indonesia," J. Mar. Sci. Technol., vol. 25, no. 1, pp. 48-68, 2020.
26. J. Herrera, S. Sierra, and A. Ibeas, "Ocean thermal energy conversion and other uses of deep sea water: A review," J. Mar. Sci. Eng., vol. 9, no. 4, article no. 356, 2021.
27. NREL, Renewable Electricity Futures Study, Florida: CRC Press, 2012.
28. Y. J. Chu, "A new biomimicry marine current turbine: Study of hydrodynamic performance and wake using software OpenFOAM," J. Hydrodyn., vol. 28, no. 1, pp. 125-141, 2016.
29. S. Mohammadi, M. Hassanalian, H. Arionfard, and S. Bakhtiyarov, "Optimal design of hydrokinetic turbine for low-speed water flow in Golden Gate Strait," Renew. Energy, vol. 150, pp. 147-155, 2020.
30. H. Gonabadi, A. Oila, A. Yadav, and S. Bull, "Fatigue life prediction of composite tidal turbine blades," Ocean Eng., vol. 260, article no. 111903, 2022.
31. M. Nachtane, M. Tarfaoui, I. Goda, and M. Rouway, "A review on the technologies, design considerations and numerical models of tidal current turbines," Renew. Energy, vol. 157, pp. 1274-1288, 2020.
32. P. A. S. F. Silva, L. D. Shinomiya, T. F. D. Oliveira, J. R. P. Vaz, A. L. A. Mesquita, and A. C. P. B. Junior, "Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM," Appl. Energy, vol. 185, pp. 1281-1291, 2017.
33. E. M. Fagan, C. R. Kennedy, S. B. Leen, and J. Goggins, "Damage mechanics based design methodology for tidal current turbine composite blades," Renew. Energy, vol. 97, pp. 358-372, 2016.
34. J. M. Laurens, M. Ait-Mohammed, and M. Tarfaoui, "Design of bare and ducted axial marine current turbines," Renew. Energy, vol. 89, pp. 181-187, 2016.
35. R. Vennell, "Exceeding the Betz limit with tidal turbines," Renew. Energy, vol. 55, pp. 277-285, 2013.
36. X. Luo, G. Zhu, and J. Feng, "Multi-point design optimization of hydrofoil for marine current turbine," J. Hydrodyn., vol. 26, no. 5, pp. 807-817, 2014.
37. W. A. Timmer and R. P. J. O. M. van Rooij, "Summary of the Delft University Wind Turbine Dedicated Airfoils," J. Sol. Energy Eng., vol. 125, no. 4, pp. 488-496, 2003.
38. A. Fajri, S. Suryanto, R. Adiputra, A. R. Prabowo, D. D. D. P. Tjahjana, I. Yaningsih, F. B. Laksono, A. Nurrohmad, A. Nugroho, F. A. Wandono, P. A. Budiantoro, S. Ramayanti, and M. Soedjarwo, "Tensile assessment of woven CFRP using finite element method: A benchmarking and preliminary study for thin-walled structure application," Curve. Layer. Struct., vol. 11, no. 1, article no. 20240002, 2024.
39. H. Gonabadi, A. Oila, A. Yadav, and S. Bull, "Structural performance of composite tidal turbine blades," Compos. Struct., vol. 278, article no. 114679, 2021.
40. H. Ullah, M. Hussain, N. Abbas, H. Ahmad, M. Amer, and M. Noman, "Numerical investigation of modal and fatigue performance of a horizontal axis tidal current turbine using fluid–structure interaction," J. Ocean Eng. Sci., vol. 4, no. 4, pp. 328-337, 2019.
41. M. Nachtane, M. Tarfaoui, A. El Moumen, and D. Saifaoui, "Damage prediction of horizontal axis marine current turbines under hydrodynamic, hydrostatic and impacts loads," Compos. Struct., vol. 170, pp. 146-157, 2017.
42. F. Luo, S. Zhang, and D. Yang, "Anti-Explosion Performance of Composite Blast Wall with an Auxetic Re-Entrant Honeycomb Core for Offshore Platforms," J. Mar. Sci. Eng., vol. 8, no. 3, article no. 182, 2020.
43. R. Malki, A. J. Williams, T. N. Croft, M. Togneri, and I. Masters, "A coupled blade element momentum – Computational fluid dynamics model for evaluating tidal stream turbine performance," Appl. Math. Model., vol. 37, no. 5, pp. 3006-3020, 2013.
44. B. Huang, Y. Gong, R. Wu, P. Wang, J. Chen, and P. Wu, "Study on hydrodynamic performance of a horizontal axis tidal turbine with a lobed ejector," Ocean Eng., vol. 248, article no. 110769, 2022.
45. M. J. Lawson, Y. Li, and D. C. Sale, "Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine," Int. Conf. Ocean Offshore Arct. Eng., vol. 5, pp. 711-720, 2011.
46. M. E. Harrison, W. M. J. Batten, L. E. Myers, and A. S. Bahaj, "Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines," IET Renew. Power Gener., vol. 4, no. 6, article no. 613, 2010.
47. C. Li, Y. Xiao, Y. Xu, Y. Peng, G. Hu, and S. Zhu, "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Appl. Energy, vol. 212, pp. 1107-1125, 2018.
48. A. S. Bahaj, W. M. J. Batten, and G. McCann, "Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines," Renew. Energy, vol. 32, no. 15, pp. 2479-2490, 2007.
49. M. Allmark, R. Ellis, T. Ebdon, C. Lloyd, S. Ordonez-Sanchez, R. Martinez, A. Mason-Jones, C. Johnstone, and T. O'Doherty, "A detailed study of tidal turbine power production and dynamic loading under grid generated turbulence and turbine wake operation," Renew. Energy, vol. 169, pp. 1422-1439, 2021.
50. A. Fajri, A. R. Prabowo, N. Muhayat, D. F. Smaradhana, and A. Bahatmaka, "Fatigue analysis of engineering structures: State of development and achievement," Procedia Struct. Integr., vol. 33, pp. 19-26, 2021.
51. M. Nachtane, M. Tarfaoui, A. El Moumen, and D. Saifaoui, "Numerical investigation of damage progressive in composite tidal turbine for renewable marine energy," in 2016 International Renewable and Sustainable Energy Conference (IRSEC), Marrakech, Morocco, 2016.
52. R. B. Barber and M. R. Motley, "Cavitating response of passively controlled tidal turbines," J. Fluid. Struct., vol. 66, pp. 462-475, 2016.
53. P. Davies, Evaluation of New Composite Materials for Marine Applications, Berlin: Springer Nature, 2024.
54. M. Yusvika, A. Fajri, T. Tuswan, A. R. Prabowo, S. Hadi, I. Yaningsih, T. Muttaqie, and F. B. Laksono, "Numerical prediction of cavitation phenomena on marine vessel: Effect of the water environment profile on the propulsion performance," Open Eng., vol. 12, no. 1, pp. 293-312, 2022.
55. M. R. Motley and R. B. Barber, "Passive control of marine hydrokinetic turbine blades," Compos. Struct., vol. 110, pp. 133-139, 2014.
56. A. Wimshurst, C. Vogel, and R. Willden, "Cavitation limits on tidal turbine performance," Ocean Eng., vol. 152, pp. 223-233, 2018.
57. L. Hammar, L. Eggertsen, S. Andersson, J. Ehnberg, R. Arvidsson, M. Gullström, and S. Molander, "A probabilistic model for hydrokinetic turbine collision risks: Exploring impacts on fish," PLOS ONE, vol. 10, no. 3, pp. 1-25, 2015.
58. V. Christensen, "A Review of Advancing an Ecosystem Approach in the Gulf of Maine," Trans. Am. Fish. Soc., vol. 143, no. 3, article no. 832, 2014.
59. A. C. P. T. Nugroho, C. Sasmito, A. P. Fuadi, D. Hendrik, C. W. K. Rahadi, R. D. Permana, and N. M. R. Fuadi, "Corrosion Rate Analysis and Prediction of the Remaining Life of the Research Vessel to Improve Ship Safety Aspects," Mekanika: Majalah Ilmiah Mekanika, vol. 22, no. 2, pp. 68-75, 2023.
60. J. M. Walker, K. A. Flack, E. E. Lust, M. P. Schultz, and L. Luznik, "Experimental and numerical studies of blade roughness and fouling on marine current turbine performance," Renew. Energy, vol. 66, pp. 257-267, 2014.
Refbacks
- There are currently no refbacks.