Evaluating the Influence of Environmental Factors and Parameters on Advancements in Welding and Joining Processes: A Review

Sudarno Sudarno, Quang Thang Do, Haris Nubli, Dandun Mahesa Prabowoputra, Nur Candra Dana Agusti, Ridwan Ridwan, Anggi Vandika

Abstract

This review article presents a comprehensive overview of welding, including its environmental influence, common welding failures, welding parameters, and predictions of development regarding welding and corrosion. The quality and integrity of welds can be significantly affected by environmental factors such as temperature, humidity, and atmospheric contaminants. Moreover, welding failures can occur due to various reasons, such as improper welding techniques, inadequate preparation, corrosion, or material defects, leading to structural weaknesses and compromised joint integrity. Furthermore, notable progress has been achieved in welding system technology, encompassing automation, robotics, and real-time monitoring. These advancements underscore the vital role of welding parameters in transforming control, precision, and productivity within the welding process. The integration of innovative welding systems has led to improved welding efficiency, reduced human error, and increased overall process reliability. This review consolidates knowledge from diverse sources, making it a valuable resource for researchers, practitioners, and industries involved in welding.

Full Text:

PDF

References

1. I. A. Ibrahim, S. A. Mohamat, A. Amir, and A. Ghalib, “The effect of Gas Metal Arc Welding (GMAW) processes on different welding parameters,” Procedia Eng., vol. 41, pp. 1502-1506, 2012.

2. F. Gemme, Y. Verreman, L. Dubourg, and P. Wanjara, “Effect of welding parameters on microstructure and mechanical properties of AA7075-T6 friction stir welded joints,” Fatigue Fract. Eng. Mater. Struct., vol. 34, no. 11, pp. 877-886, 2011.

3. T. L. Dickerson and J. Przydatek, “Fatigue of friction stir welds in aluminium alloys that contain root flaws,” Int. J. Fatigue, vol. 25, no. 12, pp. 1399-1409, 2003.

4. R. Sandeep, B. M. Nagarajan, M. P. Kumar, B. Jose, M. Manoharan, and A. Natarajan, “Influence of welding environment on joint characteristics of friction stir lap welded AA7475-PPS polymer hybrid joints,” Mater. Lett., p. 134781, 2023.

5. S. M. Muthu, S. S. Prabu, S. Sujai, K. D. Ramkumar, N. Beemkumar, and E. Kariappan, “Oxide scale formation and damage mechanism of the alloy 625 weldments in air and simulated boiler environment under cyclic condition,” Mater. Lett., vol. 346, p. 134543, 2023.

6. Z. Zhang, L. Malashkhia, Y. Zhang, E. Shevtshenko, and Y. Wang, “Design of Gaussian process based model predictive control for seam tracking in a laser welding digital twin environment,” J. Manuf. Process., vol. 80, pp. 816-828, 2022.

7. M. Amarnath, N. Sudharshan, and P. Srinivas, “Automatic detection of defects in welding using deep learning - a systematic review,” Mater. Today Proc., 2023 (In Press).

8. B. T. Gibson, D. H. Lammlein, T. J. Prater, W. R. Longhurst, C. D. Cox, M. C. Ballun, K. J. Dharmaraj, G. E. Cook, and A. M. Strauss, “Friction stir welding: Process, automation, and control,” J. Manuf. Process., vol. 16, no. 1, pp. 56-73, 2014.

9. N. G. Bonacorso, A. A. Gonçalves, and J. C. Dutra, “Automation of the processes of surface measurement and of deposition by welding for the recovery of rotors of large-scale hydraulic turbines,” J. Mater. Process. Technol., vol. 179, no. 1, pp. 231-238, 2006.

10. M. Jakubowski, “Corrosion fatigue crack propagation rate characteristics for weldable ship and offshore steels with regard to the influence of loading frequency and saltwater temperature,” Polish Marit. Res., vol. 24, no. 1, pp. 88-99, 2017.

11. N. R. Mandal, Ship construction and welding. Springer, 2017.

12. C. G. Soares and Y. Garbatov, “Reliability assessment of maintained ship hulls with correlated corroded elements,” Mar. Struct., vol. 10, no. 8-10, pp. 629-653, 1997.

13. G. Atkins, D. Thiessen, N. Nissley, and Y. Adonyi, “Welding process effects in weldability testing of steels,” Weld. J., vol. 81, no. 4, pp. 61-68, 2002.

14. K. C. Jang, D. G. Lee, J. M. Kuk, and I. S. Kim, “Welding and environmental test condition effect in weldability and strength of Al alloy,” J. Mater. Process. Technol., vol. 164, pp. 1038-1045, 2005.

15. M. Abbasi, A. Abdollahzadeh, B. Bagheri, A. Ostovari-Moghaddam, F. Sharifi, and M. Dadaei, “Study on the effect of the welding environment on the dynamic recrystallization phenomenon and residual stresses during the friction stir welding process of aluminum alloy,” Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 235, no. 8, pp. 1809-1826, 2021.

16. R. Shimpi, C. S. Kumar, and R. Katarane, “Friction stir welding processing, materials and its applications,” IOP Conf. Ser. Mater. Sci. Eng., vol. 810, no. 1, p. 012035, 2020.

17. S. Rouhi, A. Mostafapour, and M. Ashjari, “Effects of welding environment on microstructure and mechanical properties of friction stir welded AZ91C magnesium alloy joints,” Sci. Technol. Weld. Join., vol. 21, no. 1, pp. 25-31, 2016.

18. B. R. Somers and A. W. Pense, “Welding failure analysis,” Mater. Charact., vol. 33, pp. 295-309, 1994.

19. D. J. Thomas, “Analyzing the failure of welded steel components in construction systems,” J. Fail. Anal. Prev., vol. 18, no. 2, pp. 304-314, 2018.

20. J. Stabryła and K. Dutka, “Failure analysis of welded constructions,” Weld. Int., vol. 25, no. 7, pp. 517-522, 2011.

21. T. Saju and M. Velu, “Fracture toughness and fatigue crack growth rate studies on rotary friction weldments of nickel-based superalloys,” Mater. Lett., vol. 327, p. 133027, 2022.

22. H. Carvalho, R. Ridwan, S. Sudarno, A. R. Prabowo, D. M. Bae, and N. Huda, “Failure criteria in crashworthiness analysis of ship collision and grounding using FEA : Milestone and development,” Mek. Maj. Ilm. Mek., vol. 22, no. 1, pp. 30-39, 2023.

23. A. R. Prabowo, R. Ridwan, T. Tuswan, and F. Imaduddin, “Forecasting the effects of sailure criteria in assessing ship structural damage modes,” Civ. Eng. J., vol. 8, no. 10, pp. 2053-2068, 2022.

24. R. Ridwan, A. R. Prabowo, N. Muhayat, T. Putranto, and J. M. Sohn, “Tensile analysis and assessment of carbon and alloy steels using fe approach as an idealization of material fractures under collision and grounding,” Curved Layer. Struct., vol. 7, no. 1, pp. 188-198, 2020.

25. R. Ridwan, T. Putranto, F. B. Laksono, and A. R. Prabowo, “Fracture and damage to the material accounting for transportation crash and accident,” Procedia Struct. Integr., vol. 27, no. 2020, pp. 38-45, 2020.

26. R. Ridwan, W. Nuriana, and A. R. Prabowo, “Energy absorption behaviors of designed metallic square tubes under axial loading : Experiment - based benchmarking and finite element calculation,” J. Mech. Behav. Mater., vol. 31, no. 1, pp. 443-461, 2022.

27. A. R. Prabowo, D. M. Bae, J. M. Sohn, A. F. Zakki, B. Cao, and J. H. Cho, “Effects of the rebounding of a striking ship on structural crashworthiness during ship-ship collision,” Thin-Walled Struct., vol. 115, no. February, pp. 225-239, 2017.

28. A. R. Prabowo, B. Cao, D. M. Bae, S. Y. Bae, A. F. Zakki, and J. M. Sohn, “Structural analysis of the double bottom structure during ship grounding by finite element approach,” Lat. Am. J. Solids Struct., vol. 14, no. 6, pp. 1106-1123, 2017.

29. P. Hariprasath, P. Sivaraj, V. Balasubramanian, S. Pilli, and K. Sridhar, “Evaluation of high cycle fatigue behavior of flux cored arc welded naval grade DMR249 A grade steel joints for ship hull structures,” Forces Mech., vol. 11, no. March, p. 100189, 2023.

30. S. R. Nathan, V. Balasubramanian, A. G. Rao, T. Sonar, M. Ivanov, and K. Suganeswaran, “Effect of tool rotational speed on microstructure and mechanical properties of friction stir welded DMR249A high strength low alloy steel butt joints for fabrication of light weight ship building structures,” Int. J. Light. Mater. Manuf., vol. 6, no. 4, pp. 469-482, 2023.

31. S. Kožuh, M. Goji´, L. Vrsalovi´, and B. Ivkovi´, “Corrosion failure and microstructure analysis of AISI 316L stainless steels for ship pipeline before and after welding,” Kov. Mater., vol. 51, no. 1, pp. 53-61, 2013.

32. K. J. Kirkhope, R. Bell, L. Caron, R. I. Basu, and K. T. Ma, “Weld detail fatigue life improvement techniques. Part 2: Application to ship structures,” Mar. Struct., vol. 12, no. 7-8, pp. 477-496, 1999.

33. J. Liu, T. Jiao, S. Li, Z. Wu, and Y. F. Chen, “Automatic seam detection of welding robots using deep learning,” Autom. Constr., vol. 143, p. 104582, 2022.

34. W. H. Chu and P. C. Tung, “Development of an automatic arc welding system using a sliding mode control,” Int. J. Mach. Tools Manuf., vol. 45, no. 7-8, pp. 933-939, 2005.

35. M. D. Ngo, V. H. Duy, N. T. Phuong, H. K. Kim, and S. B. Kim, “Development of digital gas metal arc welding system,” J. Mater. Process. Technol., vol. 189, no. 1-3, pp. 384-391, 2007.

36. A. Toumpis, A. Galloway, S. Cater, and N. McPherson, “Development of a process envelope for friction stir welding of DH36 steel - A step change,” Mater. Des., vol. 62, pp. 64-75, 2014.

37. L. Raimondi, C. J. Bennett, D. Axinte, A. Gameros, and P. A. Stevens, “Development of a novel monitoring system for the in-process characterisation of the machine and tooling effects in Inertia Friction Welding (IFW),” Mech. Syst. Signal Process., vol. 156, p. 107551, 2021.

38. V. R. Santos, A. Q. Bracarense, E. C. P. Pessoa, R. R. Marinho, F. C. Rizzo, R. C. Junior, and M. J. Monteiro, “Development of oxyrutile low alloy ferritic electrode for wet welding,” J. Mater. Res. Technol., vol. 21, pp. 1223-1247, 2022.

39. A. R. Prabowo, T. Tuswan, and R. Ridwan, “Advanced development of sensors’ roles in maritime‐based industry and research: From field monitoring to high‐risk phenomenon measurement,” Appl. Sci., vol. 11, no. 9, p. 3954, 2021.

40. Q. T. Do, T. Muttaqie, P. T. Nhut, M. T. Vu, N. D. Khoa, and A. R. Prabowo, “Residual ultimate strength assessment of submarine pressure hull under dynamic ship collision,” Ocean Eng., vol. 266, p. 112951, 2022.

41. J. Chen, Y. Yang, L. Li, Z. Wang, H. Xiao, Y. Wei, T. Zhu, and H. Sun, “Effects of Ti on microstructure, mechanical properties and corrosion behavior of high-strength steel weld metals for offshore structures,” Int. J. Electrochem. Sci., vol. 16, no. 8, pp. 1-17, 2021.

42. B. Yelamasetti, G. S. Adithya, R. S. Ramadevi, P. Sonia, K. K. Saxena, N. P. Kumar, S. M. Eldin, and F. H. K. Al- kafaji, “Metallurgical, mechanical and corrosion behaviour of pulsed and constant current TIG dissimilar welds of AISI 430 and Inconel 718,” J. Mater. Res. Technol., vol. 24, pp. 6652-6664, 2023.

43. M. N. Ilman, A. Widodo, and N. A. Triwibowo, “Metallurgical, mechanical and corrosion characteristics of vibration assisted gas metal arc AA6061-T6 welded joints,” J. Adv. Join. Process., vol. 6, p. 100129, 2022.

44. S. P. Ambade, A. Sharma, A. P. Patil, and Y. M. Puri, “Effect of welding processes and heat input on corrosion behaviour of Ferritic stainless steel 409M,” Mater. Today Proc., vol. 41, pp. 1018-1023, 2021.

45. X. He, Z. Yan, H. Liang, and D. Wang, “Corrosion fatigue acoustic emission characteristics and evaluation of friction stir welding joints of AZ31 magnesium alloy in 3.5 wt.% NaCl solution,” J. Mater. Res. Technol., vol. 25, pp. 4582-4594, 2023.

46. M. Mochizuki, “Control of welding residual stress for ensuring integrity against fatigue and stress-corrosion cracking,” Nucl. Eng. Des., vol. 237, no. 2, pp. 107-123, 2007.

Refbacks

  • There are currently no refbacks.