Predicting the Drag Coefficient Characteristics of Ocean Bottom Unit (OBU) Float Array Model for Early Warning Tsunami Systems Using Computational Fluid Dynamics (CFD) Method

Yudiawan Fajar Kusuma, Ilham Hariz, Hanni Defianti, Buddin Al Hakim, Arfis Maydino F. Putra

Abstract

As a country along the Pacific Ring of Fire, Indonesia faces various natural disaster threats, including tsunamis. Therefore, an early tsunami warning system is crucial for detecting potential tsunami waves. The early tsunami warning system encompasses several complex components, one of which is the Ocean Bottom Unit (OBU) floater. This paper discusses the performance of various types of floater arrays for tsunami early warning systems using Computational Fluid Dynamics (CFD) simulations. The study focuses on coefficients, especially the drag coefficient, and the influence of the number of float arrangements on the flow pattern around the buoy or Ocean Bottom Unit (OBU) array. Among the five numerical simulation models, the six-couple floater has the highest drag and lowest lift coefficients, while the single floater has the lowest drag coefficient. The percentage of difference in drag coefficient between single floater and couple series floater is quite significant, reaching up to 50%. The moment coefficient is also affected by the number of floaters, with a series of five couple floaters having the highest moment coefficient at a Reynolds (RE) number of 2 × 106. The advantage of using the CFD method is that it can visualize current velocity, which is crucial for understanding the flow pattern around the float system. The results indicate that the flow pattern becomes more complex as the number of floater arrays increases, which leads to more vortices between the floater, resulting in increased turbulence and drag coefficient.

Full Text:

PDF

References

1. S. Hadi, S. Widayani, and S. A. Mulyo, Disaster Management Master Plan 2015 - 2045. Jakarta: Badan Nasional Penanggulangan Bencana, 2018. (in Indonesian)

2. L. Hamzah, N. T. Puspito, and F. Imamura, “Tsunami Catalog and Zones in Indonesia,” J. Nat. Disaster Sci., vol. 22, no. 1, pp. 25-43, 2000.

3. B. A. Hakim, S. Suharyanto, and W. K. Hidajat, “The Effect of Rising Sea Waters on the Effectiveness of Buildings for Coastal Protection in Semarang City,” Bul. Oseanografi Mar., vol. 2, no. 3, pp. 81-93, 2013. (in Indonesian)

4. D. Ghosh, A. K. Mittal, and S. Bhattacharyya, “Multiphase Modeling of Tsunami Impact on Building with Openings,” J. Comput. Multiph. Flows, vol. 8, no. 2, pp. 85-94, 2016.

5. P. Bird, “An Updated Digital Model of Plate Boundaries,” Geochemistry, Geophys. Geosystems an Electron. J. Earth Sci., vol. 4, no. 3, pp. 1-52, 2003.

6. C. DeMets, R. G. Gordon, and D. F. Argus, “Geologically Current Plate Motions,” J. Int. Geophys., vol. 181, no. 1, pp. 1-80, 2010.

7. P. S. G. Nasional, Map of Sources and Hazards of the 2017 Indonesian Earthquake. Kabupaten Bandung: Pusat Penelitian dan Pengembangan Perumahan dan Permukiman, Badan Penelitian dan Pengembangan, Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2017. (in Indonesian)

8. T. Gunawan, A. G. Ginanjar, N. Pimpilemba, I. Gunawan, M. Riyadi, S. Nugroho, and P., “Indonesia Tsunami Early Warning System: Concept and Implementation,” Agency for Meteorology Climatology and Geophysics, Jakarta, 2016.

9. R. Triyono, T. Prasetya, S. D. Anugrah, A. Sudrajat, U. Setiyoo, I. Gunawan, P. T. Yatimantoro, H. S. Anggraini, R. H. Rahayu, D. S. Yogaswara, P. Hawati, M. Apriani, A. M. Julius, M. Harvan, G. Simangunsong, and T. Kriswinarso, Indonesian Tsunami Catalog Per Region 416-2018. Jakarta: Badan Meteorologi Klimatologi dan Geofisika, 2018.

10. Supartoyo, Surono, and E. T. Putranto, Catalog of Destructive Earthquakes in Indonesia 1612 - 2014. Bandung: Pusat Vulkanologi dan Mitigasi Bencana Geologi, 2014.

11. W. H. Nugroho, N. J. H. Purnomo, O. Ivano, and S. Handoyo, “Design Engineering and Structural Analysis of Ocean Bottom Unit (OBU) Seabed Devices for INA-TWES,” J. Rekayasa, Energi, Manufaktur, vol. 1, no. 2, pp. 49-56, 2016.

12. D. Monardo, National Disaster Management Plan 2020-2024. Jakarta: adan Nasional Penanggulangan Bencana, 2020.

13. BNPB, National Disaster Management Agency Strategic Plan 2015-2019. Jakarta: Badan Nasional Penanggulangan Bencana, 2015.

14. A. Arif, I. Rafliana, A. M. Kodijat, and S. Dalimunthe, “Limitations and Challenges of Early Warning Systems Case Study: Palu-Donggala Tsunami,” UNDRR and UNESCO, Jakarta, 2019.

15. W. H. Nugroho, B. A. Hakim, and A., “Rancang Bangun INA Buoy Gen. 3 untuk Sistem Peringatan Dini Tsunami,” ITS Press, vol. 1, 2021.

16. Arifin, W. H. Nugroho, B. A. Hakim, and Suwahyu, “Numerical Study of Environment Loads and Mooring Line Scope Effects to The Buoy Offset,” IOP Conf. Ser.. : Earth and Envi. Sci., vol. 972, no. 1, p. 012009 2021.

17. M. Sadraey, “Chapter 3: Drag Force and Drag Coefficient,” in Aircraft Performance Analysis, 2018, pp. 1–51.

18. J. Almedeij, “Drag Coefficient of Flow Around a Sphere: Matching Asymptotically The Wide Trend,” Powd. Tech., vol. 186, no. 3, pp. 218-223, 2008.

19. M. Irfan, Y. Haryadi, D. Haryanto, and A. Rusdiansyah, “Technical Review of the Placement of the Mooring Buoy and INA-TEWS System on the Seabed,” J. Ris. dan Rekayasa Kelaut., vol. 2, no. 1, pp. 1-16, 2021.(in indonesian)

20. Arifin, H. N. Wibowo, H. Buddin, and W. Bambang, “Numerical Prediction of Foils Configuration in A Design of Buoy Glider System for Supporting Tsunami Early Warning,” IOP Conf. Ser.: Mat. Sci. and Eng., 2020.

21. Y. F. Kusuma, H. Defianti, F. Hasim, and F. A. Yohanes, “Effect of Additional Fin and Thickness of Basic Plate of The Ocean Bottom Unit (OBU) Model Using Computational Fluid Dynamics,” AIP Conf. Proc., vol. 2646, no. 1, 2023.

22. F. Tuaka, CFD Basics Using FLUENT. Bandung: Informatika, 2008.

23. N. Nisa, “Numerical Study of Fluid Flow Characteristics Across a NASA LS-0417 Airfoil Modified with a Vortex Generator,” J. Tek. Pomits, vol. 1, no. 2, pp. 1-6, 2012. (in Indonesian)

24. L. Bruno and S. Khris, “The Validity of 2D Numerical Simulations of Vortical Structures Around a Bridge Deck,” J. Math. Comput. Model., vol. 37, no. 7-8, pp. 795-828, 2003.

25. S. C. Chapra and R. P. Canale, Numerical Method For Engineers. New York: Mc Graw-Hill Book Company, 2010.

26. I. ANSYS, ANSYS Fluent Theory Guide Release 15.0. Southpointe: ANSYS Inc, 2013.

27. S. M. Salim and S. Cheah, “Wall y+ Strategy for Dealing with Wall-bounded Turbulent Flows,” in Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 2, pp. 2165-2170, 2009.

28. F. Moukalled, L. Mangani, and N. Darwish, The Finite Volume Method in Computational Fluid Dynamics. Switzerland: Springer International Publishing, 2016.

29. J. D. Bricker, K. Kawashima, and A. Nakayama, “CFD Analysis of Bridge Deck Failure Due to Tsunami,” in Proceedings of the International Symposium on Engineering, pp. 1-4, 2012.

30. S. N. Rahmah, “Analisis Aerodinamika Aileron Pesawat N2XX dengan Metode Computational Fluid Dynamics,” Universitas Jember, Jember, 2020.

Refbacks

  • There are currently no refbacks.