Predicting the Drag Coefficient Characteristics of Ocean Bottom Unit (OBU) Float Array Model for Early Warning Tsunami Systems Using Computational Fluid Dynamics (CFD) Method

Yudiawan Fajar Kusuma, Ilham Hariz, Hanni Defianti, Buddin Al Hakim, Arfis Maydino F. Putra

Abstract

The early tsunami warning system encompasses several complex components, one of which is the Ocean Bottom Unit (OBU) floater. This paper discusses the performance of various types of floater arrays for tsunami early warning systems using Computational Fluid Dynamics (CFD) simulations. The study focuses on coefficients, especially the drag coefficient, and the influence of the number of float arrangements on the flow pattern around the buoy or Ocean Bottom Unit (OBU) array. Among the five numerical simulation models, the six-couple floater has the highest drag and lowest lift coefficients, while the single floater has the lowest drag coefficient. The percentage of difference in drag coefficient between single floater and couple series floater is quite significant, reaching up to 50%. The moment coefficient is also affected by the number of floaters, with a series of five couple floaters having the highest moment coefficient at a Reynolds number (Re) of 2 × 106. The results indicate that the flow pattern becomes more complex as the number of floater arrays increases, which leads to more vortices between the floater, resulting in increased turbulence and drag coefficient.

Full Text:

PDF

References

1. S. Hadi, S. Widayani, and S. A. Mulyo, Disaster Management Master Plan 2015 2045. Jakarta: Badan Nasional Penanggulangan Bencana, 2018. (in Indonesian).

2. L. Hamzah, N. T. Puspito, and F. Imamura, “Tsunami Catalog and Zones in Indonesia,” J. Nat. Disaster Sci., vol. 22, no. 1, pp. 25-43, 2000.

3. B. A. Hakim, S. Suharyanto, and W. K. Hidajat, “Pengaruh kenaikan air laut pada efektifitas bangunan untuk perlindungan pantai kota Semarang,” Buletin Oseanografi Marina, vol. 2, no. 3, pp. 81-93, 2013. (in Indonesian).

4. D. Ghosh, A. K. Mittal, and S. Bhattacharyya, “Multiphase Modeling of Tsunami Impact on Building with Openings,” J. Comput. Multiph. Flows, vol. 8, no. 2, pp. 85-94, 2016.

5. P. Bird, “An Updated Digital Model of Plate Boundaries,” Geochemistry Geophys Geosystems, vol. 4, no. 3, article no. 1027, 2003.

6. C. DeMets, R. G. Gordon, and D. F. Argus, “Geologically Current Plate Motions,” J. Int. Geophys., vol. 181, no. 1, pp. 1-80, 2010.

7. Pusat Studi Gempa Nasional, Peta Sumber dan Bahaya Gempa Bumi Indonesia Tahun 2017, Jakarta: Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2017. (in Indonesian).

8. T. Gunawan, A. G. Ginanjar, N. Pimpilemba, I. Gunawan, M. Riyadi, S. Nugroho, and P., Indonesia Tsunami Early Warning System: Concept and Implementation, Jakarta: Agency for Meteorology Climatology and Geophysics, 2016.

9. R. Triyono, T. Prasetya, S. D. Anugrah, A. Sudrajat, U. Setiyoo, I. Gunawan, P. T. Yatimantoro, H. S. Anggraini, R. H. Rahayu, D. S. Yogaswara, P. Hawati, M. Apriani, A. M. Julius, M. Harvan, G. Simangunsong, and T. Kriswinarso, Katalog Tsunami Indonesia Per-Wilayah Tahun 416-2018, Jakarta: Badan Meteorologi Klimatologi dan Geofisika, 2018. (in Indonesian).

10. Supartoyo, Surono, and E. T. Putranto, Katalog Gempabumi Merusak di Indonesia Tahun 1612-2014, Bandung: Pusat Vulkanologi dan Mitigasi Bencana Geologi, 2014. (in Indonesian).

11. W. H. Nugroho, N. J. H. Purnomo, O. Ivano, and S. Handoyo, “Rekayasa Desain dan Analisis Struktur perangkat dasar laut Ocean Bottom Unit (OBU) untuk INA – TEWS,” Jurnal Rekayasa Energi Manufaktur, vol. 1, no. 2, pp. 49-56, 2016.

12. D. Monardo, National Disaster Management Plan 2020-2024. Jakarta: Badan Nasional Penanggulangan Bencana, 2020.

13. BNPB, National Disaster Management Agency Strategic Plan 2015-2019. Jakarta: Badan Nasional Penanggulangan Bencana, 2015.

14. A. Arif, I. Rafliana, A. M. Kodijat, and S. Dalimunthe, Limitations and Challenges of Early Warning Systems Case Study: Palu-Donggala Tsunami, Jakarta: United Nations Office for Disaster Risk Reduction, 2019.

15. W. H. Nugroho, B. A. Hakim, and A., Rancang Bangun INA Buoy Gen. 3 untuk Sistem Peringatan Dini Tsunami, Surabaya: ITS Press, 2021.

16. Arifin, W. H. Nugroho, B. A. Hakim, and Suwahyu, “Numerical Study of Environment Loads and Mooring Line Scope Effects to The Buoy Offset,” IOP Conf. Ser. Earth. Envi. Sci., vol. 972, no. 1, article no. 012009 2021.

17. M. Sadraey, Chapter 3: Drag Force and Drag Coefficient - Aircraft Performance Analysis, Riga: Omniscriptum, 2018.

18. J. Almedeij, “Drag Coefficient of Flow Around a Sphere: Matching Asymptotically The Wide Trend,” Powd. Tech., vol. 186, no. 3, pp. 218-223, 2008.

19. M. Irfan, Y. Haryadi, D. Haryanto, and A. Rusdiansyah, “Technical Review of the Placement of the Mooring Buoy and INA-TEWS System on the Seabed,” Jurnal Riset dan Rekayasa Kelautan, vol. 2, no. 1, pp. 116, 2021. (in Indonesian).

20. Arifin, H. N. Wibowo, H. Buddin, and W. Bambang, “Numerical Prediction of Foils Configuration in A Design of Buoy Glider System for Supporting Tsunami Early Warning,” IOP Conf. Ser. Mat. Sci. Eng., vol. 1052, no. 1, article no. 012017, 2020.

21. Y. F. Kusuma, H. Defianti, F. Hasim, and F. A. Yohanes, “Effect of Additional Fin and Thickness of Basic Plate of The Ocean Bottom Unit (OBU) Model Using Computational Fluid Dynamics,” AIP Conf. Proc., vol. 2646, article no. 050080, 2023.

22. F. Tuakia, Dasar-dasar cfd menggunakan fluent, Bandung: Informatika, 2008.

23. N. Nisa, “Studi Numerik Karakteristik Aliran Fluida pada Airfoil NASA LS-0417 yang Dimodifikasi dengan Vortex Generator,” POMITS, vol. 1, no. 2, pp. 1-6, 2012. (in Indonesian).

24. L. Bruno and S. Khris, “The Validity of 2D Numerical Simulations of Vortical Structures Around a Bridge Deck,” J. Math. Comput. Model., vol. 37, no. 7-8, pp. 795-828, 2003.

25. S. C. Chapra and R. P. Canale, Numerical Method For Engineers. New York: Mc Graw-Hill, 2010.

26. ANSYS, ANSYS Fluent Theory Guide Release 15.0, Pennsylvania: ANSYS Inc., 2013.

27. S. M. Salim and S. Cheah, “Wall y+ Strategy for Dealing with Wall-bounded Turbulent Flows,” in the International MultiConference of Engineers and Computer Scientists, Hong Kong, Hong Kong, 2009.

28. F. Moukalled, L. Mangani, and N. Darwish, The Finite Volume Method in Computational Fluid Dynamics, Berlin: Springer International Publishing, 2016.

29. J. D. Bricker, K. Kawashima, and A. Nakayama, “CFD Analysis of Bridge Deck Failure Due to Tsunami,” in the International Symposium on Engineering, Tokyo, Japan, 2012.

30. S. N. Rahmah, Analisis Aerodinamika Aileron Pesawat N2XX dengan Metode Computational Fluid Dynamics, Jember: Universitas Jember, 2020. (in Indonesian).

Refbacks

  • There are currently no refbacks.