Failure Criteria in Crashworthiness Analysis of Ship Collision and Grounding Using FEA: Milestone and Development

Hermes Carvalho, Ridwan Ridwan, Sudarno Sudarno, Aditya Rio Prabowo, Dong Myung Bae, Nurul Huda

Abstract

This study presents reviews of the failure criteria to capture the resulting response due to the catastrophe of ship collision and grounding using the finite element. Researchers have introduced several failure criteria, for instance, the Det Norske Veritas (DNV) RP-C204 criterion, Germanischer Lloyd criterion, Peschmann, Rice-Tracey and Cockcroft-Latham (RTCL), Bressan-Williams-Hill (BWH) instability criterion, and Liu criterion. As in the mathematical formula, each criterion has a difference. The choice of failure criteria will depend on the simulation's specific requirements and the analysis's goals. Liu's criterion can be used to evaluate the failure of materials in ship collision simulations, for example, when large element sizes (i.e., 20 mm) are considered in the simulation.

Full Text:

PDF

References

1. P. T. Pedersen, “Review and application of ship collision and grounding analysis procedures,” Mar. Struct., vol. 23, no. 3, pp. 241-262, 2010.

2. M. A. G. Calle and M. Alves, “A review-analysis on material failure modeling in ship collision,” Ocean Eng., vol. 106, pp. 20-38, 2015.

3. A. Prabowo, H. Nubli, and J. Sohn, “On the Structural Behaviour to Penetration of Striking Bow under Collision Incidents between Two Ships,” Int. J. Automot. Mech. Eng., vol. 16, pp. 7480-7497, Dec. 2019.

4. A. R. Prabowo, T. Tuswan, and R. Ridwan, “Advanced development of sensors roles in maritime‐based industry and research: From field monitoring to high‐risk phenomenon measurement,” Appl. Sci., vol. 11, no. 9, article no. 3954, 2021.

5. S. Zhang, P. T. Pedersen, and R. Villavicencio, Probability and Mechanics of Ship Collision and Grounding, Oxford: Butterworth-Heinemann, 2019.

6. N. Jones, “The credibility of predictions for structural designs subjected to large dynamic loadings causing inelastic behaviour,” Int. J. Impact Eng., vol. 53, pp. 106-114, 2013.

7. R. Ridwan, A. R. Prabowo, N. Muhayat, T. Putranto, and J. M. Sohn, “Tensile analysis and assessment of carbon and alloy steels using fe approach as an idealization of material fractures under collision and grounding,” Curved Layer. Struct., vol. 7, no. 1, pp. 188-198, 2020.

8. Ridwan, T. Putranto, F. B. Laksono, and A. R. Prabowo, “Fracture and Damage to the Material accounting for Transportation Crash and Accident,” Procedia Struct. Integr., vol. 27, pp. 38-45, 2020.

9. R. Ridwan, W. Nuriana, and A. R. Prabowo, “Energy absorption behaviors of designed metallic square tubes under axial loading : Experiment - based benchmarking and finite element calculation,” J. Mech. Behav. Mater., vol. 31, no. 1, pp. 443-461, 2022.

10. A. R. Prabowo, R. Ridwan, and T. Muttaqie, “On the Resistance to Buckling Loads of Idealized Hull Structures: FE Analysis on Designed-Stiffened Plates,” Designs, vol. 6, no. 3, article no. 46, 2022.

11. A. R. Prabowo, T. Tuswan, D. M. Prabowoputra, and R. Ridwan, “Deformation of designed steel plates: An optimisation of the side hull structure using the finite element approach,” Open Eng., vol. 11, no. 1, pp. 1034-1047, 2021.

12. F. H. A. Alwan, A. R. Prabowo, T. Muttaqie, N. Muhayat, R. Ridwan, and F. B. Laksono, “Assessment of ballistic impact damage on aluminum and magnesium alloys against high velocity bullets by dynamic FE simulations,” J. Mech. Behav. Mater., vol. 31, no. 1, pp. 595-616, 2022.

13. A. R. Prabowo, S. J. Baek, H. J. Cho, J. H. Byeon, D. M. Bae, and J. M. Sohn, “The effectiveness of thin-walled hull structures against collision impact,” Lat. Am. J. Solids Struct., vol. 14, no. 7, pp. 1345-1360, 2017.

14. S. Ehlers, J. Broekhuijsen, H. S. Alsos, F. Biehl, and K. Tabri, “Simulating the collision response of ship side structures: A failure criteria benchmark study,” Int. Shipbuild. Prog., vol. 55, no. 1-2, pp. 127-144, 2008.

15. DNV, DNV-RP-C204: Design against accidental loads, Bærum: Det Norske Veritas, 2010.

16. M. Scharrer, L. Zhang, and E. D. Egge, Abschlußbericht zum Vorhaben MTK0614, Kollisionsberechnungen in schiffbaulichen Entwurfssystemen (Collision calculations in naval engineering design systems) Bericht Nr. ESS 202.183 ; Version 1/2002-11-22. Hamburg: Germanischer Lloyd, 2002. (in German).

17. E. Lehmann and J. Peschmann, “Energy absorption by the steel structure of ships in the event of collisions,” Mar. Struct., vol. 15, no. 4-5, pp. 429-441, 2002.

18. R. Törnqvist, Design of crashworthy ship structures, Lyngby: Technical University of Denmark, 2003.

19. H. S. Alsos, O. S. Hopperstad, R. Törnqvist, and J. Amdahl, “Analytical and numerical analysis of sheet metal instability using a stress based criterion,” Int. J. Solids Struct., vol. 45, no. 7-8, pp. 2042-2055, 2008.

20. B. Liu, R. Villavicencio, S. Zhang, and C. Guedes Soares, “A simple criterion to evaluate the rupture of materials in ship collision simulations,” Mar. Struct., vol. 54, pp. 92-111, 2017.

21. ANSYS, ANSYS LS-DYNA user’s guide, Pennsylvania: ANSYS Inc., 2019.

22. J. R. Rice and D. M. Tracey, “On the ductile enlargement of voids in triaxial stress fields∗,” J. Mech. Phys. Solids, vol. 17, no. 3, pp. 201-217, 1969.

23. M. G. Cockcroft and D. J. Latham, “Ductility and the workability of metals,” J. Inst. Met., vol. 96, no. 1, pp. 33-39, 1968.

24. R. Hill, “On discontinuous plastic states, with special reference to localized necking in thin sheets,” J. Mech. Phys. Solids, vol. 1, no. 1, pp. 19-30, 1952.

25. J. D. Bressan and J. A. Williams, “The use of a shear instability criterion to predict local necking in sheet metal deformation,” Int. J. Mech. Sci., vol. 25, no. 3, pp. 155-168, 1983.

26. A. R. Prabowo, R. Ridwan, T. Tuswan, and F. Imaduddin, “Forecasting the Effects of Failure Criteria in Assessing Ship Structural Damage Modes,” Civ. Eng. J., vol. 8, no. 10, pp. 2053-2068, 2022.

27. A. R. Prabowo, R. Ridwan, T. Tuswan, J. M. Sohn, E. Surojo, and F. Imaduddin, “Effect of the selected parameters in idealizing material failures under tensile loads : Benchmarks for damage analysis on thin-walled structures,” Curved Layer. Struct., vol. 9, no. 1, pp. 258-285, 2022.

28. S. Patel, V. R. Vusa, and C. G. Soares, “Crashworthiness analysis of polymer composites under axial and oblique impact loading,” Int. J. Mech. Sci., vol. 156, pp. 221-234, 2019.

29. Y. Deng, Y. Ren, X. Fu, and H. Jiang, “Bionic-bamboo design for enhancing the crashworthiness of composite tube with groove trigger subjected to oblique load,” Int. J. Mech. Sci., vol. 206, article no. 106635, 2021.

30. M. P. M. Ahmed, S. T. Ince, and J. K. Paik, “Computational models for the structural crashworthiness analysis of a fixed-type offshore platform in collisions with an offshore supply vessel,” Thin Wall. Struct., vol. 154, article no. 106868, 2020.

31. B. Liu, R. Villavicencio, P. T. Pedersen, and C. G. Soares, “Analysis of structural crashworthiness of double-hull ships in collision and grounding,” Mar. Struct., vol. 76, article no. 102898, 2021.

32. M. A. Mansor, Z. Ahmad, and M. R. Abdullah, “Crashworthiness capability of thin-walled fibre metal laminate tubes under axial crushing,” Eng. Struct., vol. 252, article no. 113660, 2022.

33. T. Ali, Y. Peng, Z. Jinhao, L. Kun, and Y. Renchuan, “Crashworthiness optimization method for sandwich plate structure under impact loading,” Ocean Eng., vol. 250, article no. 110870, 2022.

34. J. Magliaro, W. Altenhof, and A. T. Alpas, “A review of advanced materials, structures and deformation modes for adaptive energy dissipation and structural crashworthiness,” Thin Wall. Struct., vol. 180, article no. 109808, 2022.

35. P. B. Ataabadi, D. Karagiozova, and M. Alves, “Finite element modeling of crushing of CFRP cylindrical tubes under low-velocity axial impact,” Compos. Struct., vol. 280, article no. 114902, 2022.

36. M. M. Abedi, R. J. Nedoushan, M. Sheikhzadeh, and W. R. Yu, “The crashworthiness performance of thin-walled ultralight braided lattice composite columns: Experimental and finite element study,” Compos. Part B. Eng., vol. 202, article no. 108413, 2020.

37. A. Riccio, A. Raimondo, F. D. Caprio, M. Fusco, and P. Sanità, “Experimental and numerical investigation on the crashworthiness of a composite fuselage sub-floor support system,” Compos. Part B. Eng., vol. 150, pp. 93-103, 2018.

38. X. Wang, Z. Liu, J. Wang, S. Loughney, Z. Zhao, and L. Cao, “Passengers’ safety awareness and perception of wayfinding tools in a Ro-Ro passenger ship during an emergency evacuation,” Saf. Sci., vol. 137, article no. 105189, 2021.

39. M. I. Uddin and Z. I. Awal, “Systems-theoretic approach to safety of inland passenger ship operation in Bangladesh,” Saf. Sci., vol. 126, article no. 104629, 2020.

40. M. Ahola and R. Mugge, “Safety in passenger ships: The influence of environmental design characteristics on people's perception of safety,” Appl. Ergon., vol. 59, pp. 143-152, 2017.

41. H. Arshad, J. Emblemsvåg, G. Li, and R. Ostnes, “Determinants, methods, and solutions of evacuation models for passenger ships: A systematic literature review,” Ocean Eng., 263, article no. 112371, 2022.

Refbacks

  • There are currently no refbacks.