Effect of Adding Al2O3 on the Macrostructure of Friction Stir Welding Polypropylene Sheet

Dinda Clara, Frantisek Miksik, Bambang Kusharjanta, Triyono Triyono, Aniddya Salsabila Kurnia Putri


In this study, an experimental investigation has been carried out to determine the effect of alumina (Al2O3) addition in joining polypropylene. Polypropylene is a thermoplastic material used most as a non-metallic material. One of the joining methods that can be applied in Polypropylene is Friction Stir Welding (FSW). The use of Al2O3 as a filler is to modify the polypropylene matrix's properties to improve the joint's quality. The Al2O3 powder with 99 9% purity was inserted along the polypropylene plates in the groove. This research analyzed the role of adding Al2O3 and tool rotation speed concerning the joints' quality. The experiment was performed under different values of tool speed rotation (204 rpm, 356 rpm, 620 rpm, and 1140 rpm) and the presence or absence of the addition of alumina powder. Then, the joint's quality is visually observed by optical macroscopy at the top and cross-section view. From macroscopic observations, adding alumina could make the visual of the joint look better and result in minimum defects than the joint without alumina addition. Instead, the increasing tool speed rotation helped the distribution of alumina during the welding process.

Full Text:



1. T. O. J. Kresser, “Polypropylene,” 19th ed., Reinhold, 1960.

2. R. . Prasad, “Fsw Of Polypropylene Reinforced With Al 2 o 3 Nano Composites , Effect On Mechanical And Microstructural Properties,” Int. J. Eng. Res. Appl., vol. 2, no. 6, pp. 288–296, 2012.

3. Z. Kiss and T. Czigány, “Applicability of friction stir welding in polymeric materials,” Period. Polytech. Mech. Eng., vol. 51, no. 1, p. 15, 2007.

4. Z. Arifin, S. D. Prasetyo, S. Suyitno, D. D. D. P. Tjahjana, R. A. Rachmanto, W. E. Juwana, C. H. B. Apribowo, and T. Trismawati, “Rancang Bangun Alat Elliptical trainer Outdoor,” Mek. Maj. Ilm. Mek., vol. 19, no. 2, p. 104, 2020.

5. Z. Arifin, D. D. D. P. Tjahjana, R. A. Rachmanto, S. Suyitno, S. D. Prasetyo, and T. Trismawati, “Redesign Mata Bor Tanah Untuk Pembuatan Lubang Biopori Di Desa Puron, Kecamatan Bulu, Kabupaten Sukoharjo,” Mek. Maj. Ilm. Mek., vol. 19, no. 2, p. 60, 2020.

6. S. K. Sahu, D. Mishra, R. P. Mahto, V. M. Sharma, S. K. Pal, K. Pal, S. Banerjee, and P. Dash, “Friction stir welding of polypropylene sheet,” Eng. Sci. Technol. an Int. J., vol. 21, no. 2, pp. 245–254, 2018.

7. A. W. S. C. on D. and Symbols, A. N. S. Institute, A. W. S. T. A. Committee, and A. W. Society, Standard Welding Terms and Definitions. American Welding Society, 1989.

8. K. Panneerselvam and K. Lenin, “Joining of Nylon 6 plate by friction stir welding process using threaded pin profile,” Mater. Des., vol. 53, pp. 302–307, 2014.

9. M. I. Khan, “Welding science and technology.” New Age International (P) Ltd., Publishers, New Delhi, 2007.

10. M. Rezaee Hajideh, M. Farahani, and N. Molla Ramezani, “Reinforced Dissimilar Friction Stir Weld of Polypropylene to Acrylonitrile Butadiene Styrene with Copper Nanopowder,” J. Manuf. Process., vol. 32, pp. 445–454, 2018.

11. S. Raja, M. Ridha, and M. Fadzil, “A review on nanomaterials reinforcement in friction stir welding,” vol. 9, 2020.

12. P. Samal, P. R. Vundavilli, A. Meher, and M. M. Mahapatra, “Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties,” J. Manuf. Process., vol. 59, pp. 131– 152, 2020.

13. H. Ahmadi, N. B. Mostafa Arab, and F. A. Ghasemi, “Optimization of process parameters for friction stir lap welding of carbon fibre reinforced thermoplastic composites by Taguchi method,” J. Mech. Sci. Technol., vol. 28, no. 1, pp. 279–284, 2014.

14. A. Doniavi, S. Babazadeh, T. Azdast, and R. Hasanzadeh, “An investigation on the mechanical properties of friction stir welded polycarbonate/aluminium oxide nanocomposite sheets,” J. Elastomers Plast., vol. 49, no. 6, pp. 498–512, 2017.

15. R. B. Azhiri, R. Mehdizad Tekiyeh, E. Zeynali, M. Ahmadnia, and F. Javidpour, “Measurement and evaluation of joint properties in friction stir welding of ABS sheets reinforced by nanosilica addition,” Meas. J. Int. Meas. Confed., vol. 127, no. April, pp. 198–204, 2018.

16. H. Aghajani Derazkola and A. Simchi, “Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly(methyl methacrylate)-based nanocomposites prepared by friction stir processing,” J. Mech. Behav. Biomed. Mater., vol. 79, no. January, pp. 246–253, 2018.

17. C. Piconi, “Alumina,” Compr. Biomater., pp. 73–94, 2011.

18. Röchling-Group, “Technical data sheet Polystone® P homopolymer,” p. 49733, 2015.

19. A. Magalhaes, Thermo-electric temperature measurements in friction stir welding – Towards feedback control of temperature, no. 13. 2016.

20. A. C. F. Silva, J. De Backer, and G. Bolmsjö, “Temperature measurements during friction stir welding,” pp. 2899–2908, 2017.

21. R. Zettler and T. Vugrin, Effects and defects of friction stir welds. Woodhead Publishing Limited, 2003.

22. P. K and L. K, “Effects And Defects Of The Polypropylene Plate For Different Parameters In Friction Stir Welding,” Int. J. Res. Eng. Technol., vol. 2, no. 2, 2013.

23. G. H. Payganeh, N. B. Mostafa Arab, Y. Dadgar Asl, F. A. Ghasemi, and M. Saeidi Boroujeni, “Effects of friction stir welding process parameters on appearance and strength of polypropylene composite welds,” Int. J. Phys. Sci., vol. 6, no. 19, pp. 4595–4601, 2011.

24. . K. P., “Effects and Defects of the Polypropylene Plate for Different Parameters in Friction Stir Welding Process,” Int. J. Res. Eng. Technol., vol. 02, no. 02, pp. 143–152, 2013.

25. A. I. Albannai, “Review The Common Defects In Friction Stir Welding,” vol. 9, no. 11, 2020.

26. R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Mater. Sci. Eng. R Reports, vol. 50, no. 1– 2, 2005.


  • There are currently no refbacks.