Experimental Study Influences Changes In Compression Ratio To Performance Of Single Cylinder Otto Engine

Wibawa Endra Juwana, Rendy Adhi Rachmanto, Mugi Wiyono, Iwan Istanto

Abstract

Increasing the compression ratio is an attempt to increase the efficiency and performance of the engine. The purpose of the study was to analyze the effect of changes in the compression ratio on engine performance. Tests using a single-cylinder Otto engine by comparing the performance of an enlarged compression ratio of 9.7:1 and 10.4:1 with a standard compression ratio of 9.0:1. The result of the research is that the compression ratio of 9.7:1 produces a peak torque of 7.51 Nm at 6000 rpm, a peak power of 5.30 kW at 8000 rpm, and the lowest BSFC is 0.146 kg/kW.h at 6000 rpm. Torque and power increased by 0.09 Nm and 0.28 kW, and BSFC decreased by 0.018 kg/kW.h compared to the standard compression ratio of 9.0:1. Using a compression ratio of 10.4:1 produces a peak torque of 7.69 Nm at 6000 rpm, a peak power of 5.38 kW at 8000 rpm, and the lowest BSFC is 0.116 kg/kW.h at 6000 rpm. Torque and power increased by 0.27 Nm and 0.36 kW, and BSFC decreased by 0.030 kg/kW.h compared to the standard compression ratio of 9.0:1.

Full Text:

PDF

References

1. R. A. Ratu and F. Anggara, “Investigation of Numerical Analysis in the Effect of Comparison of Inlet and Outlet Diameter of Guide Vane on Velocity Profile,” Sci. J. Mech. Eng. Kinemat., vol. 5, no. 1, pp. 1–10, 2020.
2. C. Si, E. Dengan, and D. S. B. Etanol, “STUDI EKSPERIMEN MODIFIKASI RASIO KOMPRESI PADA 4-STROKE,” vol. Cl.
3. D. Jung, K. Sasaki, and N. Iida, “Effects of increased spark discharge energy and enhanced in-cylinder turbulence level on lean limits and cycle-to-cycle variations of combustion for SI engine operation,” Appl. Energy, vol. 205, no. April, pp. 1467–1477, 2017.
4. C. Gong, X. Si, and F. Liu, “Combustion and emissions behaviors of a stoichiometric GDI engine with simulated EGR (CO2) at low load and different spark timings,” Fuel, vol. 295, p. 120614, 2021.
5. E. C. Kwon, K. Song, M. Kim, Y. Shin, and S. Choi, “Performance of small spark ignition engine fueled with biogas at different compression ratio and various carbon dioxide dilution,” Fuel, vol. 196, pp. 217–224, 2017.
6. S. K. Hotta, N. Sahoo, K. Mohanty, and V. Kulkarni, “Ignition timing and compression ratio as effective means for the improvement in the operating characteristics of a biogas fueled spark ignition engine,” Renew. Energy, vol. 150, no. x, pp. 854–867, 2020.
7. S. S. Sandhu, M. K. G. Babu, and L. M. Das, “Performance and combustion characteristics of a typical motor bike engine operated on blends of CNG and hydrogen using electronically controlled solenoid actuated injection system,” ARPN J. Eng. Appl. Sci., vol. 6, no. 2, pp. 1819–6608, 2011.
8. S. Machmud, “Pengaruh Variasi Unjuk Derajat Pengapian Terhadap Kerja Mesin,” J. Tek., vol. 3, no. 1, pp. 58–64, 2013.
9. T. Su, C. Ji, S. Wang, L. Shi, J. Yang, and X. Cong, “Effect of spark timing on performance of a hydrogengasoline rotary engine,” Energy Convers. Manag., vol. 148, pp. 120–127, 2017.
10. D. D. Suranto, “Polypropylene Fuel Utilization with Varying Additives for Motor Fuels,” Food Agric. Sci. Polije Proc. Ser., vol. 3, no. 1, pp. 246–255, 2021.
11. Y. Pramudito, D. Wirahadi, N. A. Faturrahman, F. Supriadi, S. A. Bethari, D. Rulianto, S. Widodo, C. Y. Respatiningsih, L. Aisyah, and E. Yuliarita, “Comparison Performance CI Engine of Using High-Speed Diesel Fuel-Biodiesel Blend (B30) and (B40) on Diesel Engine Dyno Test,” in IOP Conference Series: Earth and Environmental Science, 2022, vol. 1034, no. 1, p. 12058.
12. B. Pranoto, C. Gunawan, H. I. Firmansyah, H. Wicaksono, A. A. Nugraha, and M. Trifiananto, “Design And Control System of Automatic Control System of Coal Flow on Belt Conveyor Installation,” Mek. Maj. Ilm. Mek., vol. 20, no. 2, p. 86, 2021.
13. B. Darmonoa, H. Pranotoa, and Z. Arifinb, “Torque Analysis of 2 KW BLDC (Brushless Direct Current) Motor with Speed Variations in Electric Cars E-Falco,” Int. J. Adv. Technol. Mech. Mechatronics Mater., vol. 2, no. 2, pp. 76–86, 2021.
14. Z. Arifin, D. D. D. P. Tjahjana, R. A. Rachmanto, S. Suyitno, S. D. Prasetyo, and T. Trismawati, “Redesign Mata Bor Tanah Untuk Pembuatan Lubang Biopori Di Desa Puron, Kecamatan Bulu, Kabupaten Sukoharjo,” Mek. Maj. Ilm. Mek., vol. 19, no. 2, p. 60, 2020.
15. W. Wagino, N. Jalinus, R. Refdinal, I. Nanda, and J. R. Firdaus, “The Effect of Changes in Ignition Timing on Power, Torque and Fuel Consumption on the Honda Supra X 125CC,” J. Pendidik. Tambusai, vol. 5, no. 3, pp. 9162–9167, 2021.
16. S. D. Prasetyo, C. Harsito, Sutanto, and Suyitno, “Energy consumption of spray dryer machine for producing red natural powder dye and its stability,” AIP Conf. Proc., vol. 2097, no. April, pp. 1–7, 2019.
17. Z. Arifin, S. D. Prasetyo, S. Suyitno, D. D. D. P. Tjahjana, R. A. Rachmanto, W. E. Juwana, C. H. B. Apribowo, and T. Trismawati, “Rancang Bangun Alat Elliptical trainer Outdoor,” Mek. Maj. Ilm. Mek., vol. 19, no. 2, p. 104, 2020.
18. A. ANDRIANTO, “ANALISIS PENGARUH BERAT ROLLER CVT 18 g, 15 g, 12 g TERHADAP DAYA DAN TORSI MOTOR MATIC VARIO 150 CC DENGAN METODE DYNO TEST.” Universitas Mercu Buana Jakarta, 2021.

19. E. Yandri, B. Novianto, F. Fridolini, R. H. Setyabudi, H. Wibowo, S. K. Wahono, K. Abdullah, W. Purba, and Y. A. Nugroho, “The technical design concept of hi-tech cook stove for urban communities using nonwood agricultural waste as Fuel sources,” in E3S Web of Conferences, 2021, vol. 226.
20. S. A. Binjuwair, A. M. Alkhedhair, A. A. Alharbi, and I. A. Alshunifi, “Combustion and Emission Analysis of SI Engine Fuelled by Saudi Arabian Gasoline RON91 and RON95 with Variable Compression Ratios and Spark Timing,” OALib, vol. 04, no. 12, pp. 1–21, 2017.

Refbacks

  • There are currently no refbacks.